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 �=�D�á���F�]�Q�L�N���Q�U�������G�R���5�H�J�X�O�D�P�L�Q�X��S�]�N�R�á�\��D�R�N�W�R�U�V�N�L�H�M���� 

�6�3�5�$�:�2�=�'�$�1�,�(�����5�Ï�'�2�.�5�(�6�2�:�(���=���5�(�$�/�,�=�$�&�-�,���,�1�'�<�:�,�'�8�$�/�1�(�*�2���3�/�$�1�8��
�%�$�'�$�:�&�=�(�*�21  

�&�=�	���û���,�����,�1�)�2�5�0�$�&�-�(���2�*�Ï�/�1�(���� 

�,�P�L�
���L���Q�D�]�Z�L�V�N�R���G�R�N�W�R�U�D�Q�W�D���� 
  

  

�1�X�P�H�U���D�O�E�X�P�X���� 
  

  

�'�]�L�H�G�]�L�Q�D�����G�\�V�F�\�S�O�L�Q�D���Q�D�X�N�R�Z�D���O�X�E��
�D�U�W�\�V�W�\�F�]�Q�D���� 
  

  

�,�P�L�
���L���Q�D�]�Z�L�V�N�R���S�U�R�P�R�W�R�U�D���O�X�E���S�U�R�P�R�W�R�U�y�Z���� 
  

  

�,�P�L�
���L���Q�D�]�Z�L�V�N�R���S�U�R�P�R�W�R�U�D���S�R�P�R�F�Q�L�F�]�H�J�R2���� 
  

  

�&�=�	���û �,�,�� �(�7�$�3�<�� �� �3�5�=�<�*�2�7�2�:�$�1�,�$�� �5�2�=�3�5�$�:�<�� �'�2�.�7�2�5�6�.�,�(�-�� �/�8�%��
�$�5�7�<�6�7�<�&�=�1�(�-���� 

Tematyka i plan pracy doktorskiej  

�7�H�P�D�W��
�U�R�]�S�U�D�Z�\��
�G�R�N�W�R�U�V�N�L�H�M�� 

  
  

�2�S�L�V��
�S�U�R�E�O�H�P�D�W�\�N�L��
�E�D�G�D�Z�F�]�H�M�� 

 

�0�H�W�R�G�\��
�E�D�G�D�Z�F�]�H�� 

 

�:�V�W�
�S�Q�D��
�E�L�E�O�L�R�J�U�D�I�L�D�� 

 

Rok 
�N�V�]�W�D�á�F�H�Q�L�D 

Etapy przygotowania rozprawy Okres realizacji 

   

   

   

   
 

                                                           
1 �6�S�U�D�Z�R�]�G�D�Q�L�H�� �Z�U�D�]�� �]�� �]�D�á���F�]�Q�L�N�D�P�L�� �Q�D�O�H�*�\�� �G�R�V�W�D�U�F�]�\�ü�� �Z�� �I�R�U�P�L�H�� �S�D�S�L�H�U�R�Z�H�M�����]�E�L�Q�G�R�Z�D�Q�\�� �G�R�N�X�P�H�Q�W���� �R�U�D�]�� �H�O�H�N�W�U�R�Q�L�F�]�Q�H�M�� 
���Q�D���Q�R���Q�L�N�X���]�H�Z�Q�
�W�U�]�Q�\�P�����Z���M�H�G�Q�\�P���S�O�L�N�X���3�'�)�� 
2 �Z���S�U�]�\�S�D�G�N�X���S�R�Z�R�á�D�Q�L�D���S�U�R�P�R�W�R�U�D���S�R�P�R�F�Q�L�F�]�H�J�R  



 �&�=�	���û���,�,�,�����=�5�(�$�/�,�=�2�:�$�1�(���=�$�'�$�1�,�$���%�$�'�$�:�&�=�(���:���5�$�0�$�&�+���,�1�'�<�:�,�'�8�$�/�1�(�*�2��
�3�/�$�1�8���%�$�'�$�:�&�=�(�*�2���� 

�5�R�N��
�N�V�]�W�D�á�F�H�Q�L�D�� 

�1�D�]�Z�D���]�D�G�D�Q�L�D��
�E�D�G�D�Z�F�]�H�J�R���O�X�E��
�D�U�W�\�V�W�\�F�]�Q�H�J�R�� 

�2�N�U�H�V���U�H�D�O�L�]�D�F�M�L���]�D�G�D�Q�L�D�� �(�I�H�N�W���U�H�D�O�L�]�D�F�M�L���]�D�G�D�Q�L�D3 

        

      

      

        

   

   

�&�=�	���û�� �,�9���� �� �(�)�(�.�7�<�� �'�=�,�$�à�$�/�1�2���&�,�� �%�$�'�$�:�&�=�(�- – �$�.�7�<�:�1�2���&�, �3�2�'�1�2�6�=���&�(��
�.�2�0�3�(�7�(�1�&�-�(�� �3�5�=�<�*�2�7�2�:�8�-���&�(�� �'�2�.�7�2�5�$�1�7�$�� �'�2�� �3�5�$�&�<�� 
O �&�+�$�5�$�.�7�(�5�=�(���%�$�'�$�:�&�=�<�0���/�8�%���%�$�'�$�:�&�=�2-�5�2�=�:�2�-�2�:�<�0   

�5�R�N��
�N�V�]�W�D�á�F�H�Q�L�D�� 

�$�N�W�\�Z�Q�R���ü�� �2�N�U�H�V��
�U�H�D�O�L�]�D�F�M�L�� 

      

    

    

      

�&�=�	���û�� �9�� �'�2�'�$�7�.�2�:�(�� �,�1�)�2�5�0�$�&�-�( , �'�2�7�<�&�=���&�(�� �5�(�$�/�,�=�$�&�-�, 
�,�1�'�<�:�,�'�8�$�/�1�(�*�2���3�/�$�1�8���%�$�'�$�:�&�=�(�*�2���� 

…………………………………………………………………………………………………………… 

…………………………………………………………………………………………………………… 

…………………………………………………………………………………………………………… 

…………………………………………………………………………………………………………… 

                                                           
3 �'�R���V�S�U�D�Z�R�]�G�D�Q�L�D���Q�D�O�H�*�\���G�R�á���F�]�\�ü�����Z���I�R�U�P�L�H���S�D�S�L�H�U�R�Z�H�M���L���H�O�H�N�W�U�R�Q�L�F�]�Q�H�M�����Q�D���Q�R���Q�L�N�X �]�H�Z�Q�
�W�U�]�Q�\�P�����Z���X�N�á�D�G�]�L�H���]�D�S�U�R�S�R�Q�R�Z�D�Q�\�P���S�R�Q�L�*�H�M������ 
- �Z�\�N�D�]���S�X�E�O�L�N�D�F�M�L���]���S�H�á�Q�\�P�L���]�D�S�L�V�D�P�L���E�L�E�O�L�R�J�U�D�I�L�F�]�Q�\�P�L, �]���S�R�G�D�Q�L�H�P���Q�U���,�6�%�1�����,�6�6N, DOI ���X�G�R�N�X�P�H�Q�W�R�Z�D�Q�\���Z���S�R�V�W�D�F�L���N�V�H�U�R�N�R�S�L�L���V�N�D�Q�y�Z��
�Z���I�R�U�P�L�H���H�O�H�N�W�U�R�Q�L�F�]�Q�H�M���D�U�W�\�N�X�á�y�Z���Q�D�X�N�R�Z�\�F�K�����P�R�Q�R�J�U�D�I�L�L�����U�R�]�G�]�L�D�á�y�Z���Z���P�R�Q�R�J�U�D�I�L�L���O�X�E���S�R�W�Z�L�H�U�G�]�H�����]���Z�\�G�D�Z�Q�L�F�W�Z�D���R���S�U�]�\�M�
�F�L�X���S�X�E�O�L�N�D�F�M�L�� 
- �Z�\�N�D�]���N�R�Q�I�H�U�H�Q�F�M�L�����V�H�V�M�L���S�R�V�W�H�U�R�Z�\�F�K ���X�G�R�N�X�P�H�Q�W�R�Z�D�Q�\���Z���S�R�V�W�D�F�L���L�Q�I�R�U�P�D�F�M�L �R���N�R�Q�I�H�U�H�Q�F�M�L���]�H���V�W�U�R�Q�\�����L�Q�W�H�U�Q�H�W�R�Z�H�M�����S�R�W�Z�L�H�U�G�]�H�Q�L�H���D�N�W�\�Z�Q�H�J�R��
�X�G�]�L�D�á�X��,  
- �S�R�W�Z�L�H�U�G�]�H�Q�L�H���U�H�D�O�L�]�D�F�M�L���V�W�D�*�X�� 
- �S�R�W�Z�L�H�U�G�]�H�Q�L�H �X�G�]�L�D�á�X���Z���R�U�J�D�Q�L�]�D�F�M�L���N�R�Q�I�H�U�H�Q�F�M�L���Q�D�X�N�R�Z�H�M���� 
- �S�R�W�Z�L�H�U�G�]�H�Q�L�H�� �]�á�R�*�H�Q�L�D�� �Z�Q�L�R�V�N�X�� �R�� �I�L�Q�D�Q�V�R�Z�D�Q�L�H�� �E�D�G�D���� �G�R�� �L�Q�V�W�\�W�X�F�M�L�� �]�H�Z�Q�
�W�U�]�Q�H�M�� �O�X�E�� �Q�X�P�H�U�� �X�P�R�Z�\�� �Q�D�� �U�H�D�O�L�]�D�F�M�
�� �J�U�D�Q�W�X�� �O�X�E�� �S�R�U�W�I�R�O�L�R��
�]�D�Z�L�H�U�D�M���F�H�J�R���X�S�X�E�O�L�F�]�Q�L�H�Q�L�D���G�]�L�D�á�D�����D�U�W�\�V�W�\�F�]�Q�\�F�K, 
- �S�R�W�Z�L�H�U�G�]�H�Q�L�H���R�W�U�]�\�P�D�Q�L�D�� ���U�R�G�N�y�Z���Q�D���E�D�G�D�Q�L�D���]���8�F�]�H�O�Q�L, 
- �S�R�W�Z�L�H�U�G�]�H�Q�L�H���X�G�]�L�D�á�X �Z���S�U�R�M�H�N�W�D�F�K���Q�D�X�N�R�Z�\�F�K�� 
- �R�S�L�V �N�Z�H�U�H�Q�G, 
- �N�V�H�U�R�N�R�S�L�H���G�R�N�X�P�H�Q�W�y�Z���S�R�W�Z�L�H�U�G�]�D�M���F�\�F�K���X�]�\�V�N�D�Q�L�H���N�R�P�S�H�W�H�Q�F�M�L���Q�S�����F�H�U�W�\�I�L�N�D�W�����X�G�]�L�D�á���Z���V�]�N�R�O�H�Q�L�X���N�X�U�V�L�H, 
- �Z�\�N�D�]���L�Q�Q�\�F�K���D�N�W�\�Z�Q�R���F�L 
- �S�U�H�]�H�Q�W�D�F�M�
���P�X�O�W�L�P�H�G�L�D�O�Q�������]�D�Z�L�H�U�D�M���F�����S�O�D�Q���U�R�]�S�U�D�Z�\���G�R�N�W�R�U�V�N�L�H�M�����R�P�y�Z�L�H�Q�L�H���S�U�R�E�O�H�P�D�W�\�N�L���E�D�G�D�Z�F�]�H�M�����P�H�W�R�G���E�D�G�D�Z�F�]�\�F�K�� 

 
  



…………………………………………………………………………………………………………… 

…………………………………………………………………………………………………………… 

…………………………………………………………………………………………………………… 

…………………………………………………………………………………………………………… 

 
 
 
 
  

            ………………………………………………………  
                       (data i czytelny podpis doktoranta)  

  
  
 
 
 
 

            ………………………………………………………  
        (data i czytelny podpis promotora/promotorów) 

 
 
 
 
 
 �8�N�á�D�G���G�R�N�X�P�H�Q�W�y�Z�� 

���� �6�W�U�R�Q�D���W�\�W�X�á�R�Z�D���]���G�D�Q�\�P�L���G�R�N�W�R�U�D�Q�W�D 
���� �6�S�U�D�Z�R�]�G�D�Q�L�H�����U�y�G�R�N�U�H�V�R�Z�H 
���� �:�\�G�U�X�N���S�U�H�]�H�Q�W�D�F�M�L���P�X�O�W�L�P�H�G�L�D�O�Q�H�M 
���� �:�\�N�D�]���S�X�E�O�L�N�D�F�M�L 
���� �:�\�N�D�]���D�N�W�\�Z�Q�R���F�L���Q�D�X�N�R�Z�\�F�K�� 

- �N�R�Q�I�H�U�H�Q�F�M�H, 
- �V�H�V�M�H���S�R�V�W�H�U�R�Z�H, 
- �V�W�D�*�H, 
- �R�U�J�D�Q�L�]�D�F�M�D���N�R�Q�I�H�U�H�Q�F�M�L, 
- �S�U�R�M�H�N�W�\�� �E�D�G�D�Z�F�]�H�� ���Z�Q�L�R�V�N�L�� �R�� �I�L�Q�D�Q�V�R�Z�D�Q�L�H�� �E�D�G�D���� �G�R�� �L�Q�V�W�\�W�X�F�M�L�� �]�H�Z�Q�
�W�U�]�Q�H�M�� �O�X�E�� �S�R�U�W�I�R�O�L�R��

�]�D�Z�L�H�U�D�M���F�H���X�S�X�E�O�L�F�]�Q�L�H�Q�L�D���G�]�L�D�á�D�� �D�U�W�\�V�W�\�F�]�Q�\�F�K�������U�R�G�N�L���Q�D���E�D�G�D�Q�L�D���]���8�F�]�H�O�Q�L��, 
- �N�Z�H�U�H�Q�G�\, 
- �N�X�U�V�\�����V�]�N�R�O�H�Q�L�D, 
- �L�Q�Q�H�� 

���� �3�R�W�Z�L�H�U�G�]�H�Q�L�D���G�]�L�D�á�D�O�Q�R���F�L �R�U�J�D�Q�L�]�D�F�\�M�Q�H�M �Q�D���U�]�H�F�]�����U�R�G�R�Z�L�V�N�D���D�N�D�G�H�P�L�F�N�L�H�J�R���L���S�R�S�X�O�D�U�\�]�D�F�M�L 
�Q�D�X�N�L 
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QFT treatment of a bound state in a thermal gas
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We investigate how to include bound states in a thermal gas in the context of quantum field theory
(QFT). To this end, we use for definiteness a scalar QFTwith a� 4 interaction, where the field� represents a
particle with massm. A bound state of the� -� type is created when the coupling constant is negative and its
modulus is larger than a certain critical value. We investigate the contribution of this bound state to the
pressure of the thermal gas of the system by using theS-matrix formalism involving the derivative of the
phase-shift scattering. Our analysis, which is based on an unitarized one-loop resumed approach which
renders the theory finite and well defined for each value of the coupling constant, leads to the following
main results: (i) We generalize the phase-shift formula in order to take into account within a unique formal
approach the two-particle interaction as well as the bound state (if existent). (ii)On the one hand, the
number density of the bound state in the system at a certain temperatureT is obtained by the standard
thermal integral; this is the case for any binding energy, even if it is much smaller than the temperature of
the thermal gas. (iii)On the other hand, the contribution of the bound state to the total pressure is partly—
but not completely—canceled by the two-particle interaction contribution to the pressure. (iv) The pressure
as a function of the coupling constant iscontinuousalso at the critical coupling for the bound state
formation: the jump in pressure due to the sudden appearance of the bound state is exactly canceled by an
analogous jump (but with opposite sign) of the interaction contribution to the pressure.
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I. INTRODUCTION

Measurement of bound states, such as deuteron (d),
helium-3 (3He), tritium (3H), helium-4 (4He), hypertritium
(3
� H) and their antiparticles, was reported in high energy

proton-proton, proton-nucleus (pA) and nucleus-nucleus
(AA) collisions [1–7]. Moreover, the QCD spectrum has
also revealed the existence of a whole new class ofX, Y, and
Z resonances that are not predicted by the quark model, some
of which can be mesonic molecular bound states; see e.g.,
Ref. [8] and references therein. Last but not least, also
pentaquark states[9] can be understood as molecular objects.

The production of nuclei as well as other hadronic bound
states has attracted a lot of interest because their binding
energies are typically much smaller than the temperature
realized in high energy collisions, hence at the first sight it
is quite puzzling that such objects can form in such a hot
environment. In addition, light nuclei are also potential
candidates to search for the critical point in the quantum

chromodynamics (QCD) phase diagram[10–13]. Excess
production of some light antinuclei in cosmic rays and dark
matter experiments[14–16] has also been investigated.

There are several models, notably thermal models
[17–22], nucleon coalescence models[11,23–33], and
dynamical models[34,35] which aim to explain the
production of bound states in high energy collisions.
Yet, there are differences among them, and it is not yet
clear up to now which approach is the correct one. In other
words, are bound states produced according to their statistic
distribution at temperatureT? If yes, which is their
contribution to the pressure?

In the present work, we intend to answer these questions
in the context of Quantum Field Theory (QFT). To this end,
we use the well known scalar� 4-interaction, where� is a
field with massm.

First, we evaluate the scattering phase shift at tree level
and at the one-loop resumed level. In the latter (and
necessary) step, we choose a proper unitarization scheme
at the resumed one-loop level for which (i) no new energy
scale appears and (ii) the results are finite and well defined
for any value of the coupling constant, denoted as� (the
corresponding potential readsV ¼ � 4� 4=4!).

When� > 0 the interaction is repulsive, and the phase
shift is always decreasing with the increase of the running
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energy
���
s

p
and smaller than zero. When� < 0 (and its

modulus is smaller than a certain critical value denoted
as � c) the interaction is attractive and the phase shift is
positive, rising for small

���
s

p
and decreasing afterward. Yet,

when� < � c < 0, a bound state is formed, whose mass is
exactly equals to2m for � ¼ � c and is smaller than2m for
� < � c. In this case, the interaction is again repulsive and
the phase shift is negative and decreasing.

We use the previous results to study the properties of this
QFT at finite temperature by using the phase-shift (or
S-matrix) approach, according to which the density of
states is proportional to the derivative of the phase shift
with respect to the

���
s

p
. For � > 0, the contribution of the

interaction to the pressure (as well as to other quantities)
is negative, in agreement with the repulsive nature of the
interaction. On the other hand, for� c < � < 0, the con-
tribution to the pressure is positive, as the attraction
suggests.

The case� < � c requires care: on the one hand, the
repulsion causes a negative contribution of the� -� inter-
action to the pressure, but the presence of the bound state
implies a positive contribution to the pressure: the net result
is a positive contribution. Quite remarkably, the total
pressure as function of the coupling constant� is continu-
ousalso at� ¼ � c: the jump in pressure generated by the
abrupt appearance of the bound state isexactlycanceled by
an analogous jump (but with opposite sign) due to the
phase-shift contribution to the pressure. Within this con-
text, we shall extend the S-matrix formalism to include the
contribution of eventual bound states. This point represents
a formal achievement of our approach and corresponds to a
rather intuitive aspect of the problem: the bound state is
also an outcome of the two-particle interaction; hence its
role should be also described by a (proper) extension of the
phase-shift approach below the particle-particle threshold.

In summary, our findings show that the number density
of the bound state with massMB can be calculated by the
“simple” thermal integral

nB ¼ � ð� c � � Þ
Z

k

h
e� �

�����������
k2þ M2

B

p
� 1

i
� 1

ð1Þ

for any temperatureT (in the previous equation,
R

k �R
d3k=ð2� Þ3). This result is valid also when the mass of

the bound stateMB is just below the threshold2m and for
temperaturesT � 2m � MB (hence, even for temperatures
much larger than the binding energy). However, the
contribution of the interacting�� -system isnot simply
given by the standard contribution to the pressure

PB ¼ � � ð� c � � ÞT
Z

k
ln

h
1 � e� �

�����������
k2þ M2

B

p i
; ð2Þ

but caution is needed. In general, we shall find that for
� < � c the total interacting contribution to the pressure

(including both the bound state and the�� -interaction
above threshold) can be expressed as

� PB with 0 < � < 1: ð3Þ

For small temperatures, the ratio� is close to 1, but for
higher temperatures it saturates to a certain finite which is
typically about 0.5. Quite interestingly, the existence of this
cancellation was discussed in the framework of Quantum
Mechanics (QM) in Ref.[21], even if in that case the
cancellation was more pronounced (� quite small) than the
result obtained in our QFT approach.

In conclusion, when a bound state forms in a thermal gas,
one should not simply add the corresponding thermal
integral as in Eq.(2) to the pressure, since the additional
role of the interaction that leads to the very existence of
that bound state is not negligible and contributes with an
opposite sign.

The paper is organized as follows: in Sec.II we
concentrate on the main properties of the system in the
vacuum, that include phase shifts, unitarization procedure,
and the emergence of a bound state when the attraction is
strong enough; then, in Sec.III we present the results at
nonzero temperature with special focus on the pressure and
the role of the bound state; finally, in Sec.IV we summarize
and conclude our paper.

II. VACUUM PHENOMENOLOGY
OF SCALAR � 4-THEORY

A. Scattering phase shifts

In this section we discuss the relatively simple but
nontrivial interacting QFT involving a single scalar field
� subject to the Lagrangian

L ¼
1
2

ð� � � Þ2 �
1
2

m2� 2 �
�
4!

� 4; ð4Þ

where the first two terms describe a free particle with mass
m and the last term corresponds to the quartic interaction.
The coupling constant� is dimensionless and the theory is
renormalizable[36]. For a detailed analysis of this theory
in the context of perturbation theory1 see Ref.[39]. As we
shall comment later on, we will introduce a nonperturbative
unitarization procedure on top of Eq.(4), in such a way to
make the theory finite, unitary and well defined for each
value of the coupling constant� (even for large ones). This
is done at the one-loop resummed level with a suitable
subtraction constant.

In the center of mass frame, the differential cross section
is given by[36]

1The � 4 QFT could also be trivial, in the sense that the
coupling constant vanishes after the renormalization procedure is
carried out; see e.g., Refs.[37,38] and refs. therein for the
discussion of this issue.
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d	
d�

¼
jAðs; t; uÞj2

64� 2s
; ð5Þ

whereAðs; t; uÞ is the scattering amplitude as evaluated
through Feynman diagrams, ands, t andu are Mandelstam
variables:

s ¼ ðp1 þ p2Þ2 � 4m2; ð6Þ

t ¼ ðp1 � p3Þ2 ¼ �
1
2

ðs � 4m2Þð1 � cos� Þ� 0; ð7Þ

u ¼ ðp2 � p3Þ2 ¼ �
1
2

ðs � 4m2Þð1 þ cos� Þ� 0; ð8Þ

wherep1, p2, p3 andp4 are four-momenta of the particles
(p1, p2 ingoing andp3, p4 outgoing), and� is the scattering
angle. The sum of these three variables iss þ t þ u ¼ 4m2.
The scattering amplitude can be expressed in terms of
partial waves (by keepings and� as independent variables)
as [40]:

Aðs; t; uÞ ¼Aðs;� Þ ¼
X�

l¼0

ð2l þ 1ÞAl ðsÞPl ðcos� Þ; ð9Þ

wherePlð
 Þwith 
 ¼ cos� are the Legendre polynomials
with

Z
þ 1

� 1
d
 Pl ð
 ÞPl0ð
 Þ ¼

2
2l þ 1

� ll 0: ð10Þ

In general, thel-th wave contribution to the amplitude is
given byAl ðsÞ ¼1

2

R
þ 1
� 1 d
 Aðs;� ÞPlð
 Þ.

In the particular case of our Lagrangian of Eq.(4), the
tree-level scattering amplitudeAðs; t; uÞ takes the very
simple form:

iAðs; t; uÞ ¼ið� � Þ� Aðs; t; uÞ ¼Aðs;� Þ ¼� � : ð11Þ

For � > 0, one hasA < 0: the (tree-level) interaction is
repulsive. On the other hand for� < 0 one hasA > 0,
which corresponds to an attractive interaction. (This case
implies that the vacuum� ¼ 0 is only metastable, but this
shall not affect our discussion.)

At tree level thes-wave amplitude’s contribution takes
the form:

A0ðsÞ ¼
1
2

Z
þ 1

� 1
d
 Aðs;� Þ ¼Aðs;� Þ ¼� � ; ð12Þ

while all other waves vanish,Al¼1;2;…ðsÞ ¼0 (this holds
true also when unitarizing the theory within the adopted
resummation scheme). Further, the total cross section reads

	 ðsÞ ¼
1
2

2�
1

64� 2s

X�

l¼0

2ð2l þ 1ÞjAl ðsÞj2 ¼
1

32� s
jA0ðsÞj2:

ð13Þ

At threshold:

	 ðsth ¼ 4m2Þ ¼
1
2

2�
1

64� 2s
2jA0ðsthÞj2 ¼ 8� jaSL

0 j2; ð14Þ

whereaSL
0 is the s-wave (l ¼ 0) scattering length (at tree

level) given by:

aSL
0 ¼

1
2

A0ðs ¼ 4m2Þ

8�
���������
4m2

p ¼
1
2

� �
16� m

: ð15Þ

The factor1=2 in the previous equation refers to identical
particles.

Next, we introduce the phase shifts. For identical
particles, one has the following general definition of the
l-th wave phase shift� lðsÞ:

e2i � l ðsÞ� 1
2i

¼ kal ðsÞ ¼
1
2

·
k

8�
���
s

p Al ðsÞ; ð16Þ

wherek ¼
�������������
s
4 � m2

q
is the modulus of the three-momen-

tum of one of the ingoing (or outgoing) particles. In the
present case, the only nonvanishing phase shift is given
by � 0ðsÞ

e2i � 0ðsÞ� 1
2i

¼ ka0ðsÞ ¼
1
2

·
k

8�
���
s

p A0ðsÞ; ð17Þ

where the“running” lengtha0ðsÞis by construction such
thata0ðs ¼ 4m2Þ ¼aSL

0 . Note, fors just above the thresh-
old we have

e2i � 0ðsÞ� 1
2i

� � 0ðsÞ� kaSL
0 : ð18Þ

In general, the phase shift� 0ðsÞcan be calculated as:

� 0ðsÞ ¼
1
2

arg

"

1 �
1

16�

����������������
4m2

s
� 1

r

A0ðsÞ

#

: ð19Þ

Next, we explore the role of� for the tree-level scatter-
ing. In Fig. 1 we show the behavior of phase shift� 0ðsÞ
using Eq.(19) for different values of� . For positive�
values, the function� 0ðsÞis negative and decreases with
increasing

���
s

p
=m: the slope of the curve (� � 0=�

���
s

p
) is

negative for any arbitrary value ofs, which indicates an
repulsive interaction. For negative� values, the opposite
behavior is realized, signaling attraction.

QFT TREATMENT OF A BOUND STATE IN A THERMAL GAS PHYS. REV. D102, 116023 (2020)

116023-3



The asymptotic values� 0ðs � � Þ do not tend to a
multiple of � , since the theory at first order in� is only
unitary at that order. As a consequence, we can trust the
results only when� 0ðsÞis sufficiently small. As a related
side remark, the expression� 0ðsÞ ¼1

2 arcsin½k
8�

��
s

p A0ðsÞ�
[which in principle follows from Eq.(17)] is also valid
only when the amplitude is sufficiently small. This draw-
back is also due to the lack of unitarity.

All these aspects show that the unitarization is necessary,
as we show in detail in the next subsection.

B. Unitarization

Here, we introduce the two-particle loop of the field� ,
that we denote as� ðsÞ. We start from the requirement
about its imaginary part above threshold (because of the
optical theorem):

I ðsÞ ¼Im� ðsÞ ¼
1
2

�������������
s
4 � m2

q

8�
���
s

p for
���
s

p
> 2m: ð20Þ

We shall put here no cutof; hence the above equation is
considered valid up to arbitrary values of the variables
[note, in each realistic QFT the quantity Im� ðsÞ should
decrease fors large enough, e.g., above the GUT or the
Planck scale; nevertheless, from a mathematical point of
view, we can get a fully consistent treatment for any value
of s]. The loop function� ðsÞfor complex values of the
variables reads

� ðsÞ ¼
1
�

Z
�

4m2
ds0 I ðs0Þ

s0� s � i �
� C; ð21Þ

where the subtractionC guarantees convergence. Here, we
make the choice� ðs � 0Þ ¼0; hence

C ¼
1
�

Z
�

4m2
ds0I ðs0Þ

s0 : ð22Þ

This choice turns out to be very convenient for our
purposes. Explicitly, the loop reads (we keep track of
the arbitrary small� since this will be important later on):

� ðsÞ ¼
1
2

1
16�

0

B
@�

1
�

��������������������

1 �
4m2

s þ i �

s

ln

���������������
1 � 4m2

sþ i �

q
þ 1

���������������
1 � 4m2

sþ i �

q
� 1

1

C
A

þ
1

16� 2 : ð23Þ

(For details on the�� loops, see Ref.[41] and references
therein.) Fors being real we get

Im� ðsÞ ¼

8
<

:

1
2

��������
s
4� m2

p

8�
��
s

p for s > ð2mÞ2

 for s < ð2mÞ2;
ð24Þ

where  � � is an infinitesimal positive quantity. Note.
Eq. (20) is fulfilled, as it should. Moreover, fors real and
larger than4m2, the real part of the loop is given by the
principal part (P) of the following integral:

Re� ðsÞ ¼
s
�

P
Z

�

sth

I ðs0Þ
ðs0� sÞs0: ð25Þ

The functions Im� ðsÞand Re� ðsÞ(for real values ofs)
are presented in Fig.2. The real part rises below threshold,
has a cusp at it, then decreases monotonically and becomes
negative for

���
s

p
=mlarge enough. The imaginary part is zero

(infinitesimally small) below threshold, then it rises above
it and saturates to the value1=ð32� Þfor large

���
s

p
=m. Note,

its right-hand-side derivative at threshold is infinite.
The loop function allows to calculate the unitarized

amplitudes in thek-channel as:

AU
k ðsÞ ¼ ½A� 1

k ðsÞ� � ðsÞ�� 1: ð26Þ

All unitarized amplitudes (and consequently phase
shifts) withl ¼ 1; 2; … vanish also at the unitarized level.
The unitarizeds-wave amplitude and phase shift are
nonzero and take the form:

AU
0 ðsÞ ¼ ½A� 1

0 ðsÞ� � ðsÞ�� 1 ¼
� �

1 þ � � ðsÞ
; ð27Þ

e2i � U
0 ðsÞ� 1
2i

¼
1
2

·
k

8�
���
s

p AU
0 ðsÞ: ð28Þ

Hence

s m/

5 10 15 20

 (
de

g)
0�

40�

20�

0

20

40

 = -200�
 = -100�
 = 100�
 = 200�

Tree level

FIG. 1. Behavior of the phase shift at the tree level for different
values of� .
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� U
0 ðsÞ ¼

1
2

arg

"

1 �
1
8�

��������������
m2

s
�

1
4

r

AU
0 ðsÞ

#

: ð29Þ

The scattering length is changed by the unitarization:

aU;SL
0 ¼

1
2

AU
0 ðs ¼ 4m2Þ

8�
���������
4m2

p ¼
1
2

1
16� m

� �
1 þ � � ð4m2Þ

: ð30Þ

Within the used unitarization

� ðs ¼ 4m2Þ ¼
1

16� 2 ; ð31Þ

hence it follows that

aU;SL
0 ¼

1
2

1
16� m

� �
1 þ �

16� 2

: ð32Þ

It is then clear thataU;SL
0 < 0 for � > 0 (repulsion), and that

aU;SL
0 > 0 for � � ð� c ¼ � 16� 2; 0Þ (attraction). However,

aU;SL
0 < 0 for � < � c, in agreement with the fact that

repulsion sets in again. This is due to the fact that for
� < � c a bound state below threshold emerges, as we shall
show in the next subsection.

Finally one can calculate� U
0 ðsÞby using the equivalent

expressions

� U
0 ðsÞ ¼

1
2

arcsin
�

k
8�

���
s

p Re½AU
0 ðsÞ�

�
; ð33Þ

� U
0 ðsÞ ¼

1
2

arccos
�
1 �

k
8�

���
s

p Im½AU
0 ðsÞ�

�
: ð34Þ

Once the unitarization procedure is employed, the expres-
sions(33), (34), and(28)give rise to the same result for the
phase shift. This is also a useful check of the correctness of
our approach.

C. Bound state

If � is negative the two scalar particles attract each other.
A natural question is under which condition a bound state
emerges. Such a bound state, denoted asB, with massMB,
should fulfill the equation [fors � ð0; 4m2Þ]

AU
0 ðsÞ� 1 ¼ ½� � � 1 � � ðs ¼ M2

BÞ� ¼0: ð35Þ

Since � ðsÞ is real for s < 4m2 and has a maximum at
threshold with� ðs ¼ 4m2Þ ¼ 1

16� 2 [see Eq.(23)], it turns
out that a bound state is present if

� � � c ¼ � 16� 2: ð36Þ

The massMB as a function of� , plotted in Fig.3, fulfills
the conditions:

MBð� ¼ � cÞ ¼2m; ð37Þ

MBð� � �� Þ ¼0: ð38Þ

This result also shows the convenience of the employed
subtraction scheme: when the attraction is infinitely strong,
the bound state becomes massless. This choice avoids

�- 

210 310 410 510

 /m
B

M

0

0.5

1

1.5

2

2� = -16 c�

FIG. 3. Mass of the bound stateMB as function of� � .
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FIG. 2. Real and imaginary parts of loop function for real
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p
=m.
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also the emergence of an additional energy scale into
the problem.

Of course, one could perform the study also for different
subtraction choices: if e.g.,� ð0Þ> 0 the massMB tends to
a finite value for an infinite negative coupling; if, instead,
� ð0Þ< 0 a tachyonic mode (instability) appears for a
negative coupling whose modulus is large enough.
Alternatively, one could use a finite cutoff function, but
this choice is linked to a nonlocal Lagrangian[42–44]. Yet,
all these possibilities imply that a new energy scale enters
into the problem. While this might be possible, that would
introduce an unnecessary complication and would also
spoil the fact that only the massm entering in Eq.(4) is the
unique energy scale of the system.

In conclusion, the quartic theory of Eq.(4) is fully
defined only once its unitarization is settled. The unitarized
version of the model together with the employed subtrac-
tion constant chosen in this work assures that the model
under study is well defined for any� (positive and negative)
and is therefore very well suited for the study that we aim to
do, namely the role of the bound state in a thermal bath.

D. Behavior of the unitarized phase shift

In order to discuss unitarized phase shift, an important
note on the adopted convention is in order. We impose that
the phase shift vanishes at threshold:

� U
0 ðs ¼ 4m2Þ ¼0; ð39Þ

regardless of the existence of the bound state below
threshold or not. In this way, the comparison between
different curves is better visible. We recall that often a
different convention is used, according to which the phase
space at threshold equalsnBS� , wherenBS is the number of
bound states below threshold[45]. Of course, the choice of
the convention has no impact on the physics. For instance,
the Levinson theorem[46,47] relates the number of poles
below threshold to the difference of the phase shift at
infinity and at threshold:

npoles-below-threshold¼
1
�

ð� U
0 ðs � � 2Þ� � U

0 ðs ¼ 4m2ÞÞ: ð40Þ

This quantity is clearly independent on the choice of an
overall constant. In some cases, the number of poles below
threshold equals the number of bound states, but care is
needed, since some unphysical poles may also exist;
see below.

Similarly, the finite temperature properties studied in
the next section depend on the derivatived� U

0 ðsÞ=ds,
which is also independent on the convention regarding
� U

0 ðs ¼ 4m2Þ. We shall also elaborate more on the behavior
of � U

0 ðsÞin Sec.III .3.
Let us now present the behavior of the unitarized phase

shift � U
0 ðsÞin Fig.4. Only for small� , the behavior of� 0ðsÞ

is similar to that of Fig.1. Yet, also in the unitarized case,
for � > 0 the phase shift and its derivative are always
negative. Moreover, the asymptotic value

� U
0 ðs � � Þ ¼� � for � > 0 ð41Þ

is realized. In addition, the point at which� U
0 ðs ¼ s1Þ ¼

� � =2 is obtained for

� � � 1 � Re� ðs1Þ ¼0; ð42Þ

where the amplitude becomes purely imaginary with

e2i� 0ðs1Þ� 1
2i

¼ i: ð43Þ

The points1 is present for each positive value of� since
Re� ðs1Þ is unbounded from below. According to the
Levinson theorem[46,47], Eq. (41) implies that a pole
below threshold exists. Indeed, for� > 0 such a pole of the
amplitude is present for a negative value ofs that fulfills
the very same Eq.(35), but of course this pole does not
correspond to a physical bound state.

Next, for � negative but belonging to the range
ð� c ¼ � 16� 2; 0Þ, the phase shift is positive, it rises for
small values of

���
s

p
=m, it reaches a maximum, and than it

bends over approaching zero for large values ofs:

� U
0 ðs � � Þ ¼0 for � � ð� c; 0Þ: ð44Þ

This is also in agreement with the Levinson’s theorem,
since no pole below threshold appears.

Finally, for � < � c the phase� U
0 ðsÞ is negative and

approaches� � :

� U
0 ðs � � Þ ¼� � for � < � c; ð45Þ

in accordance with Levinson’s theorem, since a pole for
s ¼ M2

B exists. Also in this case, there is a certain value
s ¼ s1 at which the phase is� � =2.

s m/
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FIG. 4. Behavior of the unitarized phase shift� U
0 as function of���

s
p

=m for different values of� .
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In Fig. 5 we compare the tree-level (T) and the
unitarized (U) phase shifts. The top panel shows the
results when� is small (� 10). The qualitative behavior of
the phase shifts for both cases is similar for all

���
s

p
=m

shown in the figure. When
���
s

p
=m is small (< 4), the tree-

level and unitarized results are very close to each other,
then a discrepancy is appreciable at larger values of���

s
p

=m. In the middle panel we show a similar comparison
for � ¼ � 100. In this case the unitarized phase shifts differ
significantly from the tree-level ones. For� ¼ � 100, the
unitarized phase shift first increases sharply for increasing���

s
p

=m, reaches a maximum, and then starts decreasing.
The magnitude of the unitarized phase shift is larger than
that at tree level at low

���
s

p
=m, but becomes smaller at large���

s
p

=m. For � ¼ þ 100 both the tree-level and the unita-
rized phase shift decrease for increasing

���
s

p
=m. However,

the decrease is much steeper for the unitarized phase shift.
The bottom panel of Fig.5 shows the choice� ¼ � 200.
For � ¼ 200 the comparison of the tree-level and unita-
rized phase shift is similar to that of� ¼ 100. However,
the behavior of unitarized phase shift for� ¼ � 200 is
completely different from the tree-level one. While tree-
level phase shift is positive, the unitarized phase shift is
negative because� < � c. Correspondingly, in this case the

bound state that dominates the near-threshold phenom-
enology is built.

III. THERMODYNAMICAL PROPERTIES
OF THE THEORY

We now consider the thermodynamics (TD) of the
system at nonzero temperature. We first discuss the
pressure of the system by using the phase-shift approach
at tree level, in which no bound state is present, and then at
the unitarized one-loop level. Within the latter scheme, we
study the contribution to the TD of an emerging bound state
when the attraction is large enough to form it (� � � c).

A. Pressure without the bound state: Tree-level results

The noninteracting part of the pressure for a gas of
particles with massm reads:

P� ;free ¼ � T
Z

k
ln

h
1 � e� �

����������
k2þ m2

p i
: ð46Þ

In theS-matrix formalism[48–56], the interacting part of
the pressure is related to the derivative of the phase shift
with respect to the energy by the following relation:

P�� -int ¼ � T
Z

�

2m
dx

2l þ 1
�

X�

l¼0

d� lðs ¼ x2Þ
dx

×
Z

k
ln

h
1 � e� �

���������
k2þ x2

p i
; ð47Þ

where x ¼
���
s

p
. In our specific case, only thes-wave

contribution is nonzero:

P�� -int ¼ � T
Z

�

2m
dx

1
�

d� 0ðs ¼ x2Þ
dx

Z

k
ln

h
1 � e� �

���������
k2þ x2

p i
:

ð48Þ

Then, the total tree-level pressure (obviously in the absence
of a bound state, since at tree level it cannot be generated)
is given by

Ptot ¼ P� ;free þ P�� -int ðat tree levelÞ: ð49Þ

The previous equations show that we can evaluate the
pressure atT > 0 by using solely the phase shift evaluated
in the vacuum. Of course, all other relevant thermodynamic
quantities of the thermal system (such as energy and
entropy densities, etc.) can be determined once the pressure
is known.

The temperature dependence of the corresponding pres-
sureðP� ;free þ P�� -intÞ=T4 is shown in Fig.6. The � ¼ 0
line corresponds to the pressure of a free gasP� ;free=T4

that for largeT=m saturates towards the massless limit

s m/
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FIG. 5. Comparison of tree-level (T) and unitarized (U) phase
shifts as function of

���
s

p
=mfor different values of� . As we discuss

in the text, the phase shift is chosen to vanish at threshold
[� U

0 ðs ¼ 4m2Þ ¼0], independently of the value of� . In this way it
is easy to compare the behavior of the phase shift for different
values of� , even when a bound state emerges. This choice does
not affect the physics.
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(P� ;free=T4
m¼0 ¼ � 2=90). For positive (negative)� , the

tree-level repulsive (attractive) interaction implies that
the pressure is smaller (larger) than the noninteracting
case, but never exceeds 0.5. As we shall see, the unitariza-
tion enhances the contribution of the interaction.

Next, in Fig.7 we studyP�� -int=T4 andP�� -int=P� ;free as
function of� for four differentm=Tratios 2, 1, 0.5 and 0.2.
One can see that near� ¼ 0, P�� -int=T4 changes rapidly
with � , but then saturates at large values of� . In the right
panel, one can see that all the curves of the function
P�� -int=P� ;free cross the origin at� ¼ 0, which is expected
since there is no interaction at� ¼ 0. Further, it can be seen
that the effect of the interaction is larger both for large�
and/or lowm=T.

B. Pressure without the bound state:
Unitarized results

When including the unitarization procedure explained
in Sec. II B, the interaction contribution to the pressure
is obtained by using the unitarized phase shift into the
S-matrix formalism:

PU
�� -int ¼ � T

Z
�

2m
dx

1
�

d� U
0 ðs ¼ x2Þ

dx

Z

k
ln

h
1 � e� �

���������
k2þ x2

p i
:

ð50Þ

Then, the total pressure (in the absence of a bound state) is
given by

PU
tot ¼ P� ;free þ PU

�� -int ðunitarized; for � > � cÞ: ð51Þ

Figure8 shows the temperature dependence of pressure
in the unitarized case. [Note, no bound state contribution is
present here since all the considered values of the coupling
� are larger than� c.] For small � (� 10), the normalized
pressure saturates at largeT=m.

Yet, for � ¼ � 100the normalized pressure as a function
of the temperature is quite different from the noninteracting
case, since it reaches a maximum for a finite value of the
temperature. In general, this figure shows that for large
values of� and for large temperatures, the unitarized result
is sizably different from the tree-level result reported
in Fig. 6.
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FIG. 6. Tree-level plots of the normalized pressure as function
of T=m for different values of� .
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C. The general case: Inclusion of the bound state,
formal aspects, and numerical results

The crucial question of the present work is how to
include the effect of the emergent bound stateB in the
thermodynamics. The easiest way is to add to the pressure
of the system the pressure of massMB as:

PB ¼ � � ð� c � � ÞT
Z

k
ln

h
1 � e� �

�����������
k2þ M2

B

p i
; ð52Þ

where the theta function takes into account that for� > � c
there is no bound stateB. Of course,MB is itself also a
function of � , see Eq.(35) and Fig.3.

Within this context, the full (unitarized) pressure looks
like

PU
tot ¼PB þ P� ;freeþ PU

�� -int ðunitarized;for any� Þ: ð53Þ

Quite remarkably,PU
tot turns out to be a continuous function

of � , even ifPB is not continuous at� ¼ � c since it jumps
abruptly from 0 to a certain finite value. Yet, the quantity
PU

�� -int is also not continuous in such a way to compensate
the previous jump; see below.

The issue is if the inclusion ofPB as in Eq.(52) is
correct. To study this point, we discuss how the contribu-
tion of the bound state can be formally included into the
phase-shift analysis, showing that the simple prescription
of adding one additional state to the thermodynamics is
correct and the result is independent on the residuum of the
pole of the bound state.

In order to show these features, let us first modify
Eq. (28)by extending its validity also below the threshold.
To this end we consider

e2i � U
0 ðsÞ� 1
2i

¼ Im� ðsÞ· AU
0 ðsÞ; ð54Þ

where Im� ðsÞis given by Eq.(24). Clearly, above threshold
nothing changes. On the other hand, below threshold we
get the following expression:

e2i � U
0 ðsÞ� 1
2i

¼  AU
0 ðsÞ ¼


A� 1

0 ðsÞ� � ðsÞ
: ð55Þ

Note, if  is set strictly to zero, we get obviously zero. If
there is no pole below threshold,� U

0 is an infinitesimally
small number, that can be set to zero and has no effect in the
description of the system.

Next, let us assume that a bound state below threshold
appears:A� 1

0 ðsÞ� � ðsÞ ¼0 for s ¼ M2
B � ð0; 4m2Þ. In this

case, we have (below threshold):

e2i � U
0 ðsÞ� 1
2i

¼


� Z� 1ðs � M2
BÞ þ i

ðfor 0 < s < 4m2Þ;

ð56Þ

where

Z ¼
1

� 0ðs ¼ M2
BÞ

: ð57Þ

Using the expression for the phase shift of Eq.(34)we find:

� U
0 ðsÞ ¼

1
2

arccos
�
1 �

2 2

½Z� 1ðs � M2
BÞ�2 þ  2

�

ðfor 0 < s < 4m2Þ: ð58Þ

For 0 < s < M 2
B the argument of the arccos is 1 (for an

arbitrary small ), then unitarized phase shift� U
0 ¼ n� ,

wheren is an integer. We recall that it in this work we
require that� U

0 ðsÞvanishes at threshold:

� U
0 ðs ¼ 4m2Þ ¼0: ð59Þ

By assuming that there is a single pole below threshold, for
s < M 2

B it is useful to impose thatn ¼ � 1:

� U
0 ð0 < s < M BÞ ¼� � for 0 < s < M 2

B: ð60Þ

Next, we notice that fors ¼ M2
B, the argument equals to

1 � 2 2

 2 ¼ � 1, therefore� U
0 ¼ n

2 � for this particular choice
of s.

The function� U
0 ðs ¼ x2Þmust be (for a finite , even if

arbitrarily small) a continuous and differentiable function.
Hence, it follows that

� U
0 ðs ¼ M2

BÞ ¼�
�
2

: ð61Þ

Moreover, for any value ofM2
B < s < 4m2 we have

� U
0 ðM2

B < s < 4m2Þ ¼0: ð62Þ

We may then conclude that fors � ð0; 4m2Þ, alias for
x � ð0; 2mÞ, the phase shift takes the form:

� U
0 ðx ¼

���
s

p
Þ ¼� � þ �� ðx � MBÞ: ð63Þ

In this way we obtain the desired result:

1
�

d� U
0 ðxÞ
dx

¼ � ðx � MBÞ: ð64Þ

Quite interestingly, this result is independent on the
residue of the poleZ. The bound state counts always as 1,
showing that the corresponding density of states is given by
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nB ¼ � ð� c � � Þ
Z

k

h
e� �

�����������
k2þ M2

B

p
� 1

i
� 1

; ð65Þ

in agreement with thermal models.
In order to understand better the behavior of the phase

shift, we show in the left panel of Fig.9 the behavior of the
unitarized phase shift below threshold for two different�
values, one below and another above the critical value.
For � ¼ 200> � c, the phase shift is simply zero below the
threshold and decreases with the increase of

���
s

p
=m,

whereas, for� ¼ � 200< � c, the phase shift is� � (accord-
ing to our convention) below the mass of the bound
state (MB=m	 1.98). The phase shift jumps to zero for���

s
p

¼ MB and remains zero up to the threshold. This jump
of phase shift is due to the formation of the bound state.
Above threshold the phase shift decreases with the increase
of

���
s

p
=m.

The right panel of Fig.9 shows the energy dependence of
the derivative of the phase shift. For� ¼ 200, the derivative
of the phase shift is zero below threshold. Above threshold
this quantity is negative and its magnitude increases with
the increase of

���
s

p
=m. For � ¼ � 200, there is a delta

function at
���
s

p
¼ MB, which is responsible for the inclu-

sion of the bound state in the phase-shift formalism. Indeed,
as shown in Eq.(50), the pressure depends on the derivative
of the phase shift, hence the functions depicted in the right
panel of Fig.9 represent the two-particle energy weight.

One can also understand from the plots in Fig.9 that, using
the more common convention according to which the phase
shift equals� at threshold when a bound state is present,
would amount to consider� U

0 ðsÞ þ � for � ¼ � 200in the left
panel, while the right panel would remain unchanged. This
result shows that the choice of the phase-shift value at
threshold does not affect the thermodynamics (as well as
any other physical property), as it should.

Finally, we turn to the thermodynamics of the system.
The pressure contributions from the bound state and
from the interaction can be described by the following
expression:

P�� -int-tot ¼ PU
�� -int þ PB

¼ � T
Z

�

0
dx

1
�

d� U
0 ðs ¼ x2Þ

dx

×
Z

k
ln

h
1 � e� �

���������
k2þ x2

p i
; ð66Þ

where the lower bound of the integral is now set to zero. If
the bound state is present, it isautomaticallytaken into
account (independently on the binding energy).

Next, we discuss the numerical result in presence of a
bound state. As we have already mentioned, the formation
of bound state is possible when� is less than the critical
value� c ¼ � 16� 2.

Figure 10 shows the temperature dependence of the
normalized total pressure for� ¼ � 200. For the value
� ¼ � 200(which is less than� c) the bound state is present
and, as expected, the total normalized pressure is larger
than that of noninteracting particle. For the value� ¼ 200
the total pressure is strongly reduced. Yet, in general, the
qualitative behavior of the curves for� ¼ � 200 is quite
similar to those for� ¼ � 100 depicted in Fig.8.
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FIG. 9. Left panel shows the energy dependence of the unitarized phase shift for� ¼ � 200. Right panel shows the derivative of the
corresponding phase shifts.
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The left panel of Fig.11 shows the variation of the
interacting part of normalized pressure with� (excluding
the contribution of the bound state) using the unitarized
phase shift. Unlike the tree-level result (left panel of
Fig. 7), the interacting pressure in the present case is
discontinuous at� ¼ � c. In fact, for� < � c, the interacting

part of the pressure becomes negative as a consequence
of the bound state. The right panel of Fig.11 shows
the � -dependence of interacting part of the pressure
relative to that of a free gas. It shows that for� of the
order (or larger) of 200, the interacting part of the
pressure is definitely sizable.

Figure 12 shows the behavior of the normalized total
pressure as function of� . Here, both the contribution of the
bound state and of the�� interaction above threshold are
included. Quite remarkably, the total pressure is a con-
tinuous function also at� ¼ � c: the discontinuity of the
interacting part of the pressure shown in the left panel of
Fig. 12 is compensated by an analogous (but with opposite
sign) jump of the bound state pressure.

Finally, in Fig.13 we show the variation of�

� ðT; � Þ ¼
PU

�� -int þ PB

PB
ð67Þ

as function ofT=mfor two different values of� for which
the bound states form: one just below the critical value,
� c, and a value sizably below it,� ¼ � 200. This ratio
approaches unity whenPU

�� -int is zero. When� is just
below � c, this ratio is close to unity only at lowT=m; it
then decreases with the increase ofT=m and eventually
saturates around 0.6 at higherT=m, so even at high
temperatureT=mthis fraction is not negligible. Although
the magnitude of� is smaller, the trend is similar in case
of � ¼ � 200 as well.

The results suggest that for a bound state created close to
threshold (thus� smaller but close to� c), the bound state is
indeed important, and the negative contribution to the
pressure generated by the particle-particle interaction does
not overcome the positive contribution of the bound state.
In that case, one should better include the contribution of
the bound state to the pressure, but eventually one should
take into account that its quantitative role is diminished by
the interaction above threshold.
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IV. SUMMARY

In this work we have investigated bound states in a
thermal gas in the context of QFT. To do this, a QFT
involving a single scalar particle with massm subject to a
� 4-interaction has been used. Besides the tree-level results,
we have employed a unitarized one-loop resummed
approach for which the theory is finite and well defined
for each value of the coupling constant� and for which
no new energy scale appears in the theory. Moreover, for
� < � c a bound state forms.

The phase shift of the s-wave scattering has been
calculated using the partial wave decomposition of two
body scattering and has been used to calculate the proper-
ties of the system at finite temperature through the phase-
shift (or S-matrix) approach, according to which the density
of states is proportional to the derivative of the phase shift
with respect to the running energy

���
s

p
.

For � > 0, the contribution of the interaction to the
pressure is always negative, in agreement with the repulsive
nature of the interaction. On the other hand, for� c < � < 0,
the contribution to the pressure is positive indicating an
attractive interaction. Below� c the interacting part of the
pressure due to two-body scattering switches sign: it
becomes negative due to the bound state below threshold.
Yet, the additional contribution of a gas of bound states
makes the total pressure continuous with respect to the
coupling� .

In summary, the contribution of the bound state to the
pressure as usually calculated in thermal models is actually
diminished by the contribution of the interaction among
the fields, but it is not fully canceled. Especially in the
case in which the mass of the bound state is close to2m

(the nonrelativistic case, realized for� smaller but close
to � c), the bound state has a sizable contribution to the
pressure (and thus to the thermodynamics). This contribu-
tion needs to be eventually corrected by an appropriate
multiplicative parameter� due to the role of the particle-
particle interaction above threshold. Yet, it turns out to be
larger than 0.6. We conclude that bound states (such as
nuclei or other molecular states in QCD) should not be
neglected in thermal models, even if their concrete pressure
contribution can be somewhat smaller than the value of the
corresponding thermal integrals. Moreover, the multiplicity
of such bounds states can be calculated by the usual
expression for the thermal number density, regardless of
the temperature at which the gas is considered, even if it is
much larger than the binding energy of the bound state.

In the future, one can repeat the present analysis by using
other types of QFT, eventually by including fermionic
fields. We expect that the general picture should be quite
stable and independent on the precise adopted model, but it
would be important to directly verify this statement.
Moreover, one could also calculate the parameter� in
some concrete examples, such as for the deuteron or for the
predominantly molecularlike stateXð3872Þ.
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The most unstable quantum states and elementary particles possess more than a single decay channel. At
the same time, it is well known that typically the decay law is not simply exponential. Therefore, it is natural
to ask how to spot the nonexponential decay when (at least) two decay channels are opened. In this work, we
study the tunneling phenomenon of an initially localized particle in two spatially opposite directions through
two different barriers, mimicking two decay channels. In this framework, through speci�c quantum mechanical
examples which can be accurately solved, we study the general properties of a two-channel decay that apply for
various unstable quantum states (including unstable particles). Apart from small deviations at early times, the
survival probability and the partial tunneling probability along the chosen direction are very well described by the
exponential-decay model. In contrast, the ratios of the decay probabilities and probability currents are evidently
not a simple constant (as they would be in the exponential limit), but display time-persisting oscillations. Hence,
these ratios are optimal witnesses of deviations from the exponential-decay law.

DOI: 10.1103/PhysRevA.102.022204

I. INTRODUCTION

The fact that the decay law in quantum mechanics (QM) is
not described by an exponential function is well established
[1–13]. In particular, decaying systems very often exhibit the
Zeno periodat short initial times, in which the nondecay
probability, i.e., the probabilityp(t ) that the unstable particle
prepared at the initial timet = 0 has not decayed yet at a later
timet > 0, is quadratic in time,p(t ) Š 1 � Š t2. On the other
hand, for very long times (typically several orders of mag-
nitude larger than the lifetime [2]), the nondecay probability
is typically governed by a power law. From the experimental
point of view, the deviations from the exponential decay have
been veri�ed at short times in the study of tunneling of sodium
atoms in an optical potential [14] and, more recently, in the
study of decays of unstable molecules via the emission of
photons [15]. Even if ubiquitous from a theoretical point of
view, in physical systems the deviations from the exponential
case are typically very small, making them very dif�cult to be
measured.

Quite remarkably, the nonexponential decay also allows
one to in�uence the decay rate by changing the way the
measurement is performed. As examples, the famous Quan-
tum Zeno Effect (QZE) and the Inverse Zeno Effect (IZE)
are direct consequences of the peculiarity of the decay law
[16–27] . Indeed, experimental con�rmation of both the QZE
and the IZE was achieved in experiments in which elec-
trons undergo a Rabi transition between atomic energy levels
[28–30]. In these cases, the nondecay probability oscillates
in time as� cos2(� t ) and is evidently nonexponential. Even
if this is not a real unstable system, the slowdown of the
quantum transition by frequent measurements could be seen
in these experiments. Even more interestingly, these effects

were also con�rmed in the tunneling of sodium atoms, which
represent a genuine irreversible quantum decay [31]. Finally,
the QZE and IZE are also related to the quantum computation
and quantum control, which are important elements in this
�ourishing research �eld [32,33].

Deviations from the exponential-decay law are indeed
expected also in quantum �eld theory (QFT), which is the
ultimate correct framework to study the creation and annihi-
lation of particles, and hence the decay of unstable particles
[10,34,35]. Namely, even if a perturbative treatment is not
capable to capture such deviations [36], the spectral function
in QFT is not a Breit-Wigner [37–39] and, in some cases, it
can be very different from it [40]. As a consequence, the decay
law is also not a simple exponential. Unfortunately, a direct
experimental proof of the nonexponential decay of unstable
elementary particles is still missing. Nonetheless, the Zeno
effect con�rmed recently in cavity QED [41] suggests that
different dynamical features of the simplest QM systems may
also have their counterparts in different purely QFT situations.

An interesting case is realized when an unstable quantum
state (or particle) can decay in (at least) two channels. Indeed,
this situation takes place very often in Nature. For instance, in
the realm of particle physics, most unstable particles possess
multiple decay channels [42]. Similarly, electrons in excited
atoms can decay in more than a single energy level [43].

As expected, in the exponential limit, the ratio of the decay
probabilities into the �rst and the second channel is a constant.
A detailed study of the nonexponential decay when two (or
more) decay channels are present is described in [10]. In
QM, this ratio is not a constant, but shows some peculiar
and irregular oscillations, which in [10] were discussed in
the framework of the so-called Lee model [44,45] (also called
the Friedrichs model or the Jaynes-Cummings model [43,46]),
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which captures the most salient features of QFT (for details,
see [10,47–50]). Moreover, qualitatively similar results for the
ratio of the partial decay probability currents were obtained
in [10], also in a quantum �eld theoretical model. Yet, the
topic of nonexponential decay in the presence of more decay
channels needs novel and different studies that will allow
us to understand, in more detail, its features and make an
experimental veri�cation (or falsi�cation) possible.

In this work, we explore the two-channel decay problem
in a quantum mechanical context. To this aim, we introduce
a simple model of a single particle initially con�ned in a
box potential whose walls are suddenly partially released,
allowing the particle to tunnel to the open space. In this
way, we slightly generalize the celebratedWinter’s model[3],
where only a single box wall is released. The Winter model
is recognized as one of the most important workhorses in the
theory of nonexponential decays (see, for example, [4–9] and
[51] for a general treatment). In our work, we want to mimic
two different channels of a decay and therefore we focus on
situations of essentially different barriers. In contrast to the
symmetric situation of identical barriers [52–54], in this case
the exact analytical solution is known only for the scattering
problem of external wave packets [55–59] and it does not
provide a straightforward solution for the decay scenario
studied here [60]. Speci�cally, using (in numerical means)
the corresponding time-dependent Schrödinger equation, we
check how to capture deviations from the exponential-decay
law. In agreement with Ref. [10], but with a different method,
we �nd that the ratio of the decay probability currents shows
time-persisting deviations from the exponential-decay law
predictions. The main advantage of the approach presented
here is its complete transparency of all successive steps and its
feasibility in physical experiments in which the tunneling in
different directions can be obtained by asymmetric potentials.
Moreover, as discussed in the summary, the qualitative fea-
tures of the obtained results are expected to be quite general
and can be used not only to describe the generic tunneling
processes of particles to the open space, but also to understand
decays of unstable relativistic particles in the QFT language.

II. THE MODEL

In this paper, we consider a single particle moving in a
one-dimensional space subjected to two separated� potential
barriers. The system is described by the following Hamilto-
nian:

H = Š
h̄2

2m
d2

dx2
+ VL� (x + R) + VR� (x Š R), (1)

whereRis the half distance between the two barriers and their
height is controlled by the independent parametersVL andVR.
Our aim is to �nd the decay properties of a particle that is
initially located between the barriers. To this aim, at the initial
moment (t = 0), the wave function is taken as

� (x, t = 0) = � 0(x) =

�
1�
R

cos
� � x

2R

�
, |x| � R

0, |x| > R,
(2)

which corresponds to the ground state in the limit of barriers
of in�nite heights. This choice is quite natural, but of course

one could use other initial wave functions without changing
the qualitative results that we are going to present.

The properties of the studied system are controlled by
only two independent dimensionless parameters. It is clearly
visible that all quantities can be expressed in units �xed by
the half distanceR. Namely, if all distances are measured in
units of R, energies in units of ¯h2/ (mR2), and time intervals
in units ofmR2/ h̄, then the properly rescaled (dimensionless)
Hamiltonian takes the form

H = Š
1
2

d2

dx2
+ V0[� (x + 1) + �� (x Š 1)], (3)

whereV0 = mR
h̄2 VL and � = VR/ VL are two independent di-

mensionless parameters controlling the heights of the left
barrier and the ratio between the right and the left heights,
respectively. In these units, we solve the time-dependent
Schrödinger equation,

(i� t Š H )� (x, t ) = 0, (4)

with the initial wave function (2). Notice that in the chosen
units, the initial energy of the system (in the limitV0 � � ,
and� > 0) is E0 = � 2/ 8, which is of the order of 1. Clearly,
due to the mirror symmetry of the problem, without losing
generality, one can restrict to 0< � � 1.

To quantify the dynamics of the system, we focus our
attention onthe nondecay probabilityde�ned as

P0(t ) =
� + 1

Š1
dx|� (x, t )|2, (5)

i.e., the probability that the particle is remaining in the region
x � (Š1, 1) at the timet. Note that this quantity is inter-
changeably also calledthe survival probability, but then some
attention is needed [61]. Moreover, we also consider the left
and the right decay probabilities de�ned as

PL(t ) =
� Š1

Š�
dx|� (x, t )|2, (6a)

PR(t ) =
� +�

+ 1
dx|� (x, t )|2, (6b)

wherePL(t ) (PR(t )) is the probability that at the timet, the
particle can be found to the left (right) of the well, i.e., it is the
probability that the tunneling to the left (right) has occurred
in the time interval between 0 andt. Obviously, at any instant
t , these probabilities are not independent and must obey the
normalization condition

P0(t ) + PL(t ) + PR(t ) = 1. (7)

It is also extremely useful to consider the probability currents
(the time derivatives of the probabilities) describing the speed
of their temporal change,

p0(t ) = Š
dP0(t )

dt
, pL(t ) =

dPL(t )
dt

, pR(t ) =
dPR(t )

dt
. (8)

Notice that the de�nition ofp0(t ) takes into account that the
nondecay probability decreases with time. Temporal changes
of p0(t ) are often measured in experiments since it corre-
sponds to the number of decay products per unit of time (for
instance, the lifetime measurement of the neutron by the beam
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method [62] or the decay of H-like ions via electron capture
and neutrino emission [63]). Note that a simple interpretation
holds:pL(R)(t )dt is the probability that the decay occurs to the
right (left) betweent andt + dt. Clearly, from the relation (7),
one �nds that

p0(t ) = pL(t ) + pR(t ). (9)

The central quantities that we focus on in the following are
the right-to-left ratio of probabilities,

� (t ) =
PR(t )
PL(t )

, (10)

and its counterpart, the right-to-left ratio of probability cur-
rents,

� (t ) =
pR(t )
pL(t )

. (11)

It will turn out that the time dependence of both ratios plays
a crucial role in capturing the nonexponential-decay behavior
of the system.
Finally, let us recall the explicit forms of all these functions
when the exponential Breit-Wigner (BW) limit [64–66] holds.
In this limit, the nondecay probability reads

P0(t )
BW
ŠŠ� eŠ� t , (12)

where� is the decay rate. As argued in [2], the exponential de-
pendence of the nondecay probability is a direct consequence
of the Breit-Wigner energy distribution of the unstable state.
The decay rate� can also be decomposed to partial decay
rates to the “left”� L and to the “right” � R associated with
these two distinguished decay channels,� = � L + � R. Then,
the partial decay probabilities have the form

PL(t )
BW
ŠŠ�

� L

�
(1 Š eŠ� t ), (13a)

PR(t )
BW
ŠŠ�

� R

�
(1 Š eŠ� t ). (13b)

Obviously, the partial decay probability currents read

pL(t )
BW
ŠŠ� � LeŠ� t , pR(t )

BW
ŠŠ� � ReŠ� t . (14)

For future convenience, we introduce the ratio of the partial
decay widths,

	 = � R/� L, (15)

which, in the BW limit, remains constant and directly con-
nects the right-to-left ratios (10) and (11),

� (t ) =
PR(t )
PL(t )

BW
ŠŠ� 	

BW
�ŠŠ

pR(t )
pL(t )

= � (t ). (16)

To show that the exponential-decay law is violated, it is
suf�cient to expose deviations from the constant value of
	 = � R/� L. This is why the right-to-left ratios (10) and (11)
are of special interest.

III. RESULTS

We solve the Schrödinger equation (4) by expressing the
time-dependent wave function in terms of eigenstates of the
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FIG. 1. Upper panels: The nondecay probabilityP0(t ) as a func-
tion of time for some chosen values of� andV0. The insets highlight
the behavior at short times. Bottom panels: The corresponding results
for the decay rate� (t ) = Š lnP0(t )/ t .

dimensionless Hamiltonian (3). In practice, due to a lack of
convenient exact analytical solutions, we diagonalize it on
a �nite spatial interval with closed boundaries atx = ± L
with L/ R 	 1 (for more technical details, see the Appendix).
We then calculate the nondecay probabilityP0(t ), the partial
decay probabilitiesPL(t ) andPR(t ), and, �nally, the two ratios
� (t ) and� (t ).

In the upper panel of Fig.1, we show the nondecay
probabilityP0(t ) as a function of time for some chosen values
of V0 and� (the insets highlight the changes for smallt ). It
is clearly seen that after a short initial period,P0(t ) exhibits
an exponential decay. It is even more evident when the decay
rate� (t ) = Š lnP0(t )/ t is plotted (bottom panel in Fig.1)—
after some small initial wiggles, it reaches a constant value,
indicating a quite fast transition to the BW regime. These
results suggest that in the regime of exponential decay, the
approximation (12) should be applied. It turns out that in
this regime, the nondecay probability almost ideally �ts the
relation

P0(t ) 
 eŠ� (tŠt0), (17)

manifesting the correctness of the BW limit predictions. Note
that in general the additional “time shift”t0 is nonzero and
its inverse is directly related to the initial period of nonex-
ponential decay. In fact, the sign oft0 indicates if, for small
times, the dynamics is sub- or supexponential (see [22] and
[46] for detailed discussions of this point). In the cases studied
here, this parameter is very close to 0 and, due to numerical
uncertainty, we are not able to determine its sign. To gain
a deeper insight into the validity of the BW approximation,
we additionally check how the ratio of partial decay rates
	 depends on� and V0 (see Fig.2). It turns out that the
ratio 	 becomes insensitive to changes inV0 whenV0 is large
enough. In fact, for a considered range of� , the changes in
V0 do not affect the value of	 when V0 exceeds a value
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FIG. 2. The ratio of partial decay rates	 calculated in the BW
limit as a function of the asymmetry parameter� for different values
of V0. The green solid line indicates a phenomenological relation	 =
� Š2 justi�ed in the limit of largeV0.

of about 15. Moreover, in this regime, the ratio	 , when
treated as a function of� , almost perfectly follow the simple
relation 	 (� ) 
 � Š2 (green line in Fig.2). This relation has
a direct intuitive phenomenological explanation. For largeV0,
tunnelings in opposite directions become almost independent
and therefore the ratio of tunneling amplitudes is simply given
by the ratio of the barrier heights,� Š1. It means that the ratio
of probabilities is controlled solely by� Š2.

The discussion above means that the exponential formula
provides a very good approximation for large enough (but
not too large) times. Clear deviations are visible only for
initial moments (for the cases studied,t � 5). Of course, the
deviations become larger for smallerV0. However, we focus
on the cases in whichP0(t ) is almost exponential since this is
the typically realized scenario in Nature.

The situation is very similar when partial decay probabili-
ties (6) are considered. In this case, after �tting to appropriate
exponential functions of the form

PL/ R(t ) 

� L/ R

�
[1 Š eŠ� (tŠt0)], (18)

we see full agreement of the BW limit predictions with
accurate numerical results (see Fig.3 for comparison).

All three results presented for probabilitiesP0(t ), PR(t ),
andPL(t ) suggest that any discrepancies from the exponential
behavior are poorly captured by these quantities. We checked
that this is also the case when the probability currents (8), i.e.,
the temporal derivatives of the probabilities, are considered.
However, the situation changes dramatically when, instead of
pure probabilities (probability currents), the properties of their
temporal ratios� (t ) and� (t ) are investigated. In Fig.4, we
present accurate numerical results for these ratios as a function
of time for the same set of parameters as in Fig.1. One can
see that the ratios� (t ) and � (t ) have rather complex be-
havior, especially for the initial period. More importantly, the
deviations from the constant value obtained in the exponential
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FIG. 3. Partial decay probabilitiesPR(t ) andPL (t ) as a function
of time. Note that accurate numerical results (continuous black lines)
coincidence with predictions of the BW limit (13) (red dashed lines).
See the main text for details.

BW limit are clearly visible. Both functions eventually reach
the expected constant value of	 in the limit of large times.
Note, however, that here we do not consider very large times
in which the decay is again nonexponential due to the onset
of a power law. In our studies, when referring to intermediate
and large times, we mean periods in which the decay is almost
ideally exponential.

In fact, our results allow us to conclude that partial prob-
abilities PL(t ) and PR(t ) are generally linearly independent
functions since, if� (t ) and � (t ) are not identically equal,
then the WronskianW(t ) = PL(t )pR(t ) Š PR(t )pL(t ) is not
singular. [Note that for� = 1, symmetric tunneling to the
left and to the right occurs:� (t ) = � (t ) = 1]. Only for a
very large time, when both ratios reach an almost constant
value 	 , one �nds that� (t ) Š � (t ) 
 0, which means that
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FIG. 4. Temporal ratio of partial probabilities� (t ) (continuous
lines) and partial probability currents� (t ) (dashed lines) as functions
of time for the same set of parameters as in Fig.1. The insets high-
light the short-time behavior. Both quantities oscillate at intermediate
times but the ratio� (t ) shows evident deviations from the BW limit
predictions even for very long times.
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partial probabilitiesPR(t ) andPL(t ) behave as nearly linear-
dependent functions.

In particular, the right-to-left probability currents ratio� (t )
shows evident oscillations persisting for a very long time. It
means that it is an appropriate quantity to exhibit deviations
from the exponential BW limit predictions, even in moments
when the standard nondecay probabilityP0(t ), the partial
decay probabilitiesPR(t ) andPL(t ), or even their ratio� (t )
are not able to capture this behavior. Let us also recall that the
ratio� (t ) has a straightforward physical meaning. For the time
intervals in which� (t ) > 	 [� (t ) < 	 ], the particle decay to
the right is more [less] probable than naively expected from
the exponential law. Then, the value of	 has only an appro-
priate interpretation as an average ratio. Closer inspection of
Fig. 4 shows additional interesting insights for the function
� (t ). Namely, the amplitude of oscillations does not decrease
in the limit of largeV0 as long as� is suf�ciently different
from unity. Namely, when it approaches 1, the ratio� (t )
rapidly �attens around the expected value 1. Consequently,
in these cases, the deviations from the expected constant limit
become very small.

The above analysis shows that the ratios� (t ) and� (t ) can
be regarded as appropriate quantities capturing nonexponen-
tial decay in the presence of two decay channels. However,
as we argued, the ratio of the time derivatives� (t ) is much
more sensitive to nonexponential features of the system than
the direct ratio of probabilities� (t ). Therefore, from the
experimental point of view, if one aims to validate exponential
decay, the largest effort should be put toward accurate deter-
mination of the quantity� (t ) rather than� (t ).

It is interesting to note that for a given asymmetry of the
barriers� , the amplitude of the oscillations is not strongly
dependent onV0. For example, as presented in Fig.4, the
amplitudes forV0 = 5 andV0 = 10 are not much different
when the same value of� = 2/ 5. In contrast, the frequency
of the oscillations is essentially affected by the choice ofV0
and it is larger for strongerV0. The latter observation implies
that for very largeV0, experimental detection of oscillations
will be very challenging due to the �nite resolution of time
probes. Simply, to have any realistic chance to detect the
effect, a period of the oscillation should not be smaller than
the experimental time resolution.

Importantly, it should be pointed out here that in our work,
we do not consider deviations from the exponential decay
occurring always for very large times, i.e., when the decay
is characterized by the power law rather than the exponen-
tial one [1,3,15]. In fact, this regime is not well captured
in our analysis due to the numerical simpli�cation of the
model described in the Appendix. Although going beyond
this approximation is straightforward, it highly increases the
numerical complexity without changing the results in the time
ranges that we are interested in. Therefore, the discussion of
properties of the ratios� (t ) and� (t ) for very long times is
beyond the scope of this work.

One can expect that the qualitative features of the results
obtained do not signi�cantly depend on the details of the
employed decay model. This conviction is justi�ed since
the origin of the different behavior of� (t ) and � (t ) is
ingrained in the fundamental properties of the two-channel
decay, rather than a particular physical realization. Note that

both quantities are described by the same decay width	
only in the BW limit independently in the underlying model.
It means that any deviation from this prediction is a direct
manifestation of the nonexponential decay. In other words, as
long as the probabilities for the two partial decay channels
are not equal, the corresponding functionsPL(t ) and PR(t )
approach the respective exponential limits in a slightly differ-
ent way. Consequently, ratios� (t ) and� (t ) are characterized
by slightly different and time-dependent parameters. This is
the intuitive reason why the ratios enhance the differences
quite independently of the details of a model. This is also
one of the reasons why very similar results were obtained in
a completely different context in [10] in the framework of
the Lee model [44] containing essential simpli�cation when
compared to the generalized Winter’s model considered here.
In contrast to the case studied, in the Lee model it is assumed
that there exists the uniqueunstablestate|
 0� decaying to
two different subspaces (channelsL andR) spanned by states
|k, L� and|k, R� having the same dispersion relation� (k). In
such a case, the Hamiltonian of the system can be written
explicitly in the basis of these states as

H Lee = E0|
 0�� 
 0| +
�

� �{ L,R}

� �

0
dk� (k)|k, � �� k, � |

+
�

� �{ L,R}

� �

0
dk[ f� (k)|k, � �� 
 0| + f 

� (k)|
 0�� k, � |],

(19)

wheref� (k) = � k, � |H|
 0� are transition amplitudes control-
ling tunneling through the barriers. The nonexponential decay
observed in these two, essentially different models suggests
once more that our �ndings on properties of ratios� (t ) and
� (t ) persist model independently.

IV. CONCLUSIONS

In this work, we analyzed the general problem of capturing
nonexponential properties in the presence of the two-channel
decay process. Taking as a working horse a very simple dy-
namical problem of a single particle �owing out from a leaky
box, we examined direct relations between the probabilities of
tunneling to the right and the left as functions of the control
parameters. In this way, we studied relations between partial
decays into two distinct channels in a relatively simple system,
which allows for a very accurate numerical treatment. Since
the multiple channel decay of an unstable quantum state is
a very frequent problem in QM and QFT, the results can be
important for our understanding of a broad range of physical
phenomena.

The results obtained con�rm that in the presence of two
decay channels, the system exhibits a remarkable nonexpo-
nential behavior on long timescales. Even in cases where
the simplest quantities do not reveal any nonexponential
signatures, the interchannel ratio of probability currents� (t )
directly exposes these features. Importantly, this quantity,
although not the simplest property of the system, is almost
directly measurable in experiments [67–69]. Therefore, it can
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be viewed as a possiblesmoking gunof nonexponential-decay
behavior.

It is worthwhile to point out that the model discussed in
this work, although seemingly oversimpli�ed, to some extent
can be realized experimentally and gives prospects for direct
veri�cation of our predictions. State-of-the-art experiments
[70–73] with ultracold atoms con�ned in optical traps al-
low one to prepare quasi-one-dimensional uniform box traps
where particles are con�ned. Moreover, the outside walls
of these traps can be controlled independently and released
almost on-demand, opening direct routes to realize our model.
Another interesting direction of experimental realization is to
analyze different nuclei with nonsymmetric few-channel de-
cays, for instance, the decay of particle in large nonspherical
nuclei.

From a theoretical point of view, one can easily extend the
present work to more complicated (and more realistic) forms
of asymmetric potentials. While any qualitative differences
from the results obtained are not expected, such studies would
help to establish a closer relevance to upcoming experimental
schemes. From the conceptual side, extensions of the re-
sults to higher dimensions are also straightforward. Another
promising route for further explorations is to study analogous
systems containing several interacting particles [74–85] and
pin down the role of the quantum statistics. Furthermore, the
topic should also be reinvestigated in the realm of QFT to shed
some fresh light on the problem of multichannel decays of
elementary particles and composite hadrons.
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APPENDIX: NUMERICAL APPROACH

Numerical calculations are performed in the basis of the
eigenstates of the Hamiltonian (3) diagonalized numerically
on a �nite spatial interval with closed boundary conditions at
x = ± L. Everywhere besides the pointsx = ± 1, the Hamil-
tonian is equivalent to the Hamiltonian of a free particle.
Therefore, any of its eigenstates can be expressed as follows:


 (x) =

�
�

	

Asin[p(L + x)] if x < Š1
Bsin[p(L Š x)] if x > 1
C sin(px) + D cos(px) if |x| � 1,

(A1)

where parametersA, B, C, andD are established in such a
way that the wave function ful�lls continuity conditions at
positions of the left and the right barrier. These four conditions
read

lim
� � 0

[
 (Š1 + � ) Š 
 (Š1 Š � )] = 0, (A2a)

lim
� � 0



d
dx


 (x)

�
�
�
�
Š1+ �

Š
d
dx


 (x)

�
�
�
�
Š1Š�

�
= 2VL
 (Š1), (A2b)

lim
� � 0

[
 (1 + � ) Š 
 (1 Š � )] = 0, (A2c)

lim
� � 0



d
dx


 (x)

�
�
�
�
1+ �

Š
d
dx


 (x)

�
�
�
�
1Š�

�
= 2VR
 (1), (A2d)

and they lead to the homogenous system of linear equations
of the formM · �v = 0, where�v = (A, B, C, D)T and

M =



�
�
�
�
�

1
2 pcos[(L Š 1)p] 0 Š 1

2 pcos(p) Š VL sin(p) VL cos(p) Š 1
2 psin(p)

0 Š 1
2 pcos[(L Š 1)p] 1

2 pcos(p) + VR sin(p) VR cos(p) Š 1
2 psin(p)

sin[(L Š 1)p] 0 sin(p) Š cos(p)

0 Š sin[(L Š 1)p] Š sin(p) Š cos(p)

�

�
�
�
�
�

.

In this way, the allowed momentapi and the corresponding
coef�cients �vi are determined. Then, the the time-dependent
wave function is simply given as

� (x, t ) =
�

i

 i exp
�
Šit p2

i / 2
�

 i (x), (A3)

where the expansion coef�cients i are determined by the
initial wave function (2). The accuracy of the �nal results

is easily controlled (and, if needed, may be straightforwardly
improved) by changing the number of terms in the expansion
(A3). Typically, in our calculations, we use 3000 terms and
L = 400–600, which is suf�cient to achieve well-converged
results avoiding re�ections at the walls atx = ± L for larget.
The method used assures a full control on the accuracy of the
�nal results.
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