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QFT treatment of a bound state in a thermal gas
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We investigate how to include bound states in a thermal gas in the context of quantum field theory
(QFT). To this end, we use for definiteness a scalar QFT wifhrgteraction, where the fieldrepresents a
particle with masm. A bound state of the- type is created when the coupling constant is negative and its
modulus is larger than a certain critical value. We investigate the contribution of this bound state to the
pressure of the thermal gas of the system by using-thatrix formalism involving the derivative of the
phase-shift scattering. Our analysis, which is based on an unitarized one-loop resumed approach which
renders the theory finite and well defined for each value of the coupling constant, leads to the following
main results: (i) We generalize the phase-shift formula in order to take into account within a unique formal
approach the two-particle interaction as well as the bound state (if exister@n (ie one handthe
number density of the bound state in the system at a certain tempédrasuobtained by the standard
thermal integral; this is the case for any binding energy, even if it is much smaller than the temperature of
the thermal gas. (iilpn the other handhe contribution of the bound state to the total pressure is-partly
but not completely-canceled by the two-particle interaction contribution to the pressure. (iv) The pressure
as a function of the coupling constantcisntinuousalso at the critical coupling for the bound state
formation: the jump in pressure due to the sudden appearance of the bound state is exactly canceled by an
analogous jump (but with opposite sign) of the interaction contribution to the pressure.

DOI: 10.1103/PhysRevD.102.116023

I. INTRODUCTION chromodynamics (QCD) phase diagrf®-13]. Excess
Measurement of bound states, such as deutaipn (production of_some light antinuclei in cosm_ic rays and dark
3 (4, i (), el ), yperum T SO s s hesn e
(®H) and their antiparticles, was reported in high energ 17-22], nucleon coalescencé mode[tgl,23—33], and
proton-proton, proton-nucleus (pA) and nucleus-nucleu§,namical models[34,35] which aim to explain the
(AA) collisions [1-7]. Moreover, the QCD spectrum has

! production of bound states in high energy collisions.
also revealed the existence of a whole new claXs¥fand Yet, there are differences among them, and it is not yet

Z resqnancesthat are not predicted by the quark model, somg 5, up to now which approach is the correct one. In other
of which can be mesonic molecular bound states; see €.¢,44s are bound states produced according to their statistic
Ref. [8] and references therein. Last but not Ieastz aISBistribution at temperatur@? If yes, which is their
pentaquark stat§g] can be understood as molecular objects

h duct t nuclei I her hadronic b gontribution to the pressure?
The production of nuclei as well as other hadronic bound ', the present work, we intend to answer these questions

states has attracted a lot of interest because their bindipgia context of Quantum Field Theory (QFT). To this end
energies are typically much smaller than the temperatu&e; '

lized in hiah llisi h t the first siaht e use the well known scalaf-interaction, where is a
realized in high energy collisions, hence at the first sight i '\ vith massm.

Is quite puzzling that_s_uch preCtS can form in such a .hOt First, we evaluate the scattering phase shift at tree level

environment. In addition, light _nuclel are .also potem"""and at the one-loop resumed level. In the latter (and

candidates to search for the critical point in the quantu'ﬂecessary) step, we choose a proper unitarization scheme
at the resumed one-loop level for which (i) no new energy
scale appears and (ii) the results are finite and well defined

Published by the American Physical Society under the terms gy any value of the coupling constant, denoted the
the Creative Commons Attribution 4.0 Internationl&@ense. corresponding potential reatfsvs 4 4=4!).

Further distribution of this work must maintain attribution to . : . .
the author(s) and the published articetitle, journal citation, When > 0 the interaction is repulsive, and the phase

and DOI. Funded by SCOAP shift is always decreasing with the increase of the running
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energyps and smaller than zero. When< 0 (and its  (including both the bound state and the-interaction

modulus is smaller than a certain critical value denotedbove threshold) can be expressed as

as .) the interaction is attractive and the phase shift is

positive, rising for smaﬁsand decreasing afterward. Yet, Pg with 0< <1 otly
when < (< 0, a bound state is formed, whose mass is

exactly equals t@mfor % . and is smaller tha@m for For small temperatures, the ratids close to 1, but for

< .. In this case, the interaction is again repulsive anligher temperatures it saturates to a certain finite which is
the phase shift is negative and decreasing. typically about 0.5. Quite interestingly, the existence of this

We use the previous results to study the properties of thggncellation was discussed in the framework of Quantum
QFT at finite temperature by using the phase-shift (oMechanics (QM) in Ref[21], even if in that case the
S-matrix) approach, according to which the density ofancellation was more pronouncedjfite small) than the
states is proportignal to the derivative of the phase shifesult obtained in our QFT approach.
with respect to thé s. For > 0, the contribution of the In conclusion, when a bound state forms in a_thermal gas,
interaction to the pressure (as well as to other quantitie§y)€ should not simply add the corresponding thermal
is negative, in agreement with the repulsive nature of thétegral as in Eq(2) to the pressure, since the additional
interaction. On the other hand, for< < 0, the con- role of the mtera(_:tlon that Iga_\ds to the very eX|sten_ce of
tribution to the pressure is positive, as the attractiotat bound state is not negligible and contributes with an
suggests. opposite sign. . _

The case < . requires care: on the one hand, the The paper is organized as follows: in Sét.we
repulsion causes a negative contribution of the inter- ~ concentrate on the main properties of the system in the
action to the pressure, but the presence of the bound std@uUum, that include phase shifts, unitarization procedure,
implies a positive contribution to the pressure: the net resid the emergence of a bound state when the attraction is
is a positive contribution. Quite remarkably, the totaStrong enough; then, in Seitl we present the results at
pressure as function of the coupling constaistcontinu- nonzero temperature with spemal ]‘ocus on the pressure and
ousalso at ¥ : the jump in pressure generated by thethe role of the bound state; finally, in SB¢.we summarize
abrupt appearance of the bound staexéctlycanceled by ~and conclude our paper.
an analogous jump (but with opposite sign) due to the
phase-shift contribution to the pressure. Within this con- Il. VACUUM PHENOMENOLOGY
text, we shall extend the S-matrix formalism to include the OF SCALAR “-THEORY
contribution of eventual bound states. This point represents
a formal achievement of our approach and corresponds to a
rather intuitive aspect of the problem: the bound state is
also an outcome of the two-particle interaction; hence itS
role should be also described by a (proper) extension of the
phase-shift approach below the particle-particle threshold. 1 1

In summary, our findings show that the number density L¥%Zd B —m?2 — 4 fola}
of the bound state with madég can be calculated by the 2 2 4
“simpl€ thermal integral

A. Scattering phase shifts

In this section we discuss the relatively simple but
ontrivial interacting QFT involving a single scalar field
subject to the Lagrangian

where the first two terms describe a free particle with mass

Z h [ m and the last term corresponds to the quartic interaction.
ng% 8. b e kpmz  q 1 gp  The coupling constantis dimensionless and the theory is
k renormalizablg36]. For a detailed analysis of this theory
R in the context of perturbation thedrsee Ref[39]. As we

r any temperaturd (in the previous equation, shall comment later on, we will introduce a nonperturbative

dsk:& I:?’) This result is valid also when the mass Ofunitarization procedure on top of Hq_)1 in such a way to
the bound stat®lp is just below the thresholm and for  make the theory finite, unitary and well defined for each
temperature¥  2m Mg (hence, even for temperaturesvalue of the coupling constan{even for large ones). This

much larger than the binding energy). However, thgs done at the one-loop resummed level with a suitable
contribution of the interacting -system isnot simply  subtraction constant.

given by the standard contribution to the pressure In the center of mass frame, the differential cross section
Z h D i is given by[36]
Pe¥a 8, Bl Inl1l e ¥PMi:. '
k The 4 QFT could also be trivial, in the sense that the

. . . coupling constant vanishes after the renormalization procedure is
but caution is needed. In general, we shall find that fogarried out; see e.g., Reff37,38] and refs. therein for the

< . the total interacting contribution to the pressurediscussion of this issue.
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d . jAS:;t; ubf 1 1 X . 1.
P et &b PYr2 —— 2%l p 1bp &b} V. pf:
d ' 647s EPY2 Gazs 2P IPNERE Vg SIS
where A&; t; ubis the scattering amplitude as evaluated aL3p
through Feynman diagrams, asyd andu are Mandelstam
variables: At threshold:
sYadyp pPF 4m?; ®BP &y, YadmPb 1/4%2 B%ZSZJ'AO%D}’ 1,8 jaSt%  aldp

tad, psP Y }65 4m?bd cos b 0, arp  Whereagh is the s-wavel(¥s0) scattering length (at tree
2 level) given by:

1A YVadm?b, 1
aS'L 1/4*A0 p4 Ya— .
2 8 4m? 216 m

1
U%®, psPFY% éE-BS 4m?pdp cos P 0; &b &5p

wherep4, p,, P3 andp, are four-momenta of the particles
(p1, P2 ingoing andp s, p4 outgoing), and is the scattering particles

: . >
angle. The sum of these three variablesist p u %2 4m*. Next, we introduce the phase shifts. For identical

The_ scaitering amp“‘%’de can b? expressed in terms Bgrticles, one has the following general definition of the
partial waves (by keepirgand as independent variables) |-th wave phase shift &b

as[40]:

The factorl=2 in the previous equation refers to identical

ed 1P 1 1 kK
X — ~Yika®b Vi - —p—A >R aleb
Ads; t;up YuASs; P Y &I p 1RAGHP &cos B P 2 28 s
1.0

q
. . wherek¥s $ n?is the modulus of the three-momen-
whereP,d bwith % cos are the Legendre polynomials ‘o

with tum of one of the ingoing (or outgoing) particles. In the
present case, the only nonvanishing phase shift is given
z by odsP
b1 2 Y o
d P|6 FP|06 b Ye———- ] 0 alob
1 2p1 g2l odb

1 1 Kk
S TyKaglb Vi -—p—Aish AP
In general, the-th yvave contribution to the amplitude is 2 28 s
given byAdsk ¥4 Pld As; P8R ‘ . _ _
In the particular case of our Lagrangian of E4), the where the‘running' lengthagdsbis by construction such

tree-level scattering amplitudeds: t; ub takes the very thatao® ¥a4m?p Yag-. Note, fors just above the thresh-
simple form: old we have

e2i otshP 1
2i

IAGs;t;uP id P Ads;t,ubp YAGs;, P% : dllp o8P kaSt: a.8p
For > 0, one hasA < 0: the (tree-level) interaction is
repulsive. On the other hand for< 0 one hasA > 0,
which corresponds to an attractive interaction. (This case ! r 5 #
implies that the vacuum ¥ 0 is only metastable, but this o3P 1/4} arg 1 1 am 1A,EP :  al%
shall not affect our discussion.) 2 16
At tree level thes-wave amplitude contribution takes
the form: Next, we explore the role offor the tree-level scatter-
Z ing. In Fig. 1 we show the behavior of phase shiftsp
AgdSb 1/4} bld A% PYAS: by, - a2 Using Eq.(19) for dlffere.nt value_s of . For positive .
2 values, th% functionydsbis negative and decreBses with
increasing s=m the slope of the curve (o= " S) is
while all other waves vanist#y,.,. &P %0 (this holds negative for any arbitrary value ef which indicates an
true also when unitarizing the theory within the adoptedepulsive interaction. For negativevalues, the opposite
resummation scheme). Further, the total cross section redm=havior is realized, signaling attraction.

In general, the phase shif§dsbcan be calculated as:

116023-3
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ma " Treelevel i This choice turns out to be very convenient for our
A purposes. Explicitly, the loop reads (we keep track of
ol ¥ b the arbitrary small since this will be important later on):
~ [ ]
g o T ] 0 s Y ey s
R - 2100 11p 1 4m S
- —.—. =200 - &b 1/4——%) -1 —Ing ! X
20F 1 . 216 spi 1 4 q
I, spi
N e i 2
aof T ] b 1 o3
P T R RS 16 2’
5 10 15 20

(For details on the loops, see Ref41] and references
FIG. 1. Behavior of the phase shift at the tree level for differentherein.) Fors being real we get
values of . 8
P, .
< 1 % m >
m &by, 28°s fors>@mE o,

The asymptotic valuesyds P do not tend to a
for s < @mp;

multiple of , since the theory at first order inis only
unitary at that order. As a consequence, we can trust the
results only whendsbis sufficiently small. As a related \yhere is an infinitesimal positive quantity. Note.
side remark, the expressiondsP Ysarcsingb-A.®P  Eq.(20)is fulfilled, as it should. Moreover, fareal and
[which in principle follows from Eq(17)] is also valid larger thamdm?, the real part of the loop is given by the
only when the amplitude is sufficiently small. This draw-principal part (P) of the following integral:

back is also due to the lack of unitarity.

All these aspects show that the unitarization is necessary, S | &%
as we show in detail in the next subsection. Re &b ¥+-P 3 oo a25p

Sth sks
B. Unitarization The functions Imd&band Re &b (for real values 0§)

Here, we introduce the two-particle loop of the field  are presented in Fig. The real part rises below threshold,
that we denote asdh We start from the requirement has a cusp at it, then decreases monotonically and becomes
about its imaginary part above threshold (because of thggative foﬁs:mlarge enough. The imaginary part is zero
optical theorem): (infinitesimally small) below threshold, thep it rises above

q it and saturates to the val@ied32 bfor large’” s=m Note,
1 5 m? p its right-hand-side derivative at threshold is infinite.
I8P Yam &P Ya-——p— for s> 2m: &0p The loop function allows to calculate the unitarized
28°s amplitudes in th&-channel as:

We shall put here no cutof; hence the above equation is

considered valid up to arbitrary values of the variable AP Vabelesh &b L &ep
[note, in each realistic QFT the quantity l&sP should

decrease fos large enough, e.g., above the GUT or the A ynitarized amplitudes (and consequently phase
Planck scale; nevertheless, from a mathematical point @fiis) with| 14 1: 2; ... vanish also at the unitarized level.

view, we can get a fully consistent treatment for any valugy,o initarizeds-wave amplitude and phase shift are
of s]. The loop function &b for complex values of the | er0 and take the form:

variables reads
Z

spyl  go &P o 21b AJEP VakolEP EP Vi @7

e SO S i ’ 1b &b
where the subtractio@ guarantees convergence. Here, we 5 U
make the choiced OP ¥0; hence e _ 11/4}_ kp AY&sh o8p

Z o 2i 28 s
1 I
CVYa— dSO—as0 : @2p
e S Hence
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FIG. 2. Real and imaginary parts of loop function for r%at:m

#
' C. Bound state

1 1 m 1
U 1 =~ =AU .
o &b - ) arg 1 8 S 4AO &P ! &9 If is negative the two scalar particles attract each other.
A natural question is under which condition a bound state
. . . emerges. Such a bound state, denotd®l agth massMg,
The scattering length is changed by the unltarlzatlon.shoulol fulfill the equation [fos  a0; 4m2H

U 1 2
ag™=t Ya lAOaS joamp, 1 1 . $B0p AJEPIYY, 1 BYaMEP Vi &B5p
2 g am2 216 mip &m b
Since &bis real fors < 4m? and has a maximum at

Within the used unitarization threshold with & Vs 4m?p ¥t [see Eq.(23)), it turns
1 out that a bound state is present if
& Ya 4mPp Yo——5; &B1p
16 Ve 16 2 3860
hence it follows that The masd as a function of, plotted in Fig 3, fulfills
1 1 the conditions:

16 m1p 7> Mgd Y4 P vi2m: B7P
Itis then clear thaag'>" < Ofor > 0O (repulsion), and that Mgd b 1,0: 88

ags-> 0 for d . Y% 16 ?;0p (attraction). However,
ag’ SL< 0 for < ., in agreement with the fact that This result also shows the convenience of the employed

repulsion sets in again. This is due to the fact that fopubtraction scheme: when the attraction is infinitely strong,
< . abound state below threshold emerges, as we shéflle bound state becomes massless. This choice avoids

show in the next subsection.
Finally one can calculate &pby using the equivalent N R
expressions RN ]
1 k 1'5} \\\ ]

gasb vazarcsin SH%SRelA(L,’GSD ; ®B3p e I \
s 1f \\\ .
Uasb ik arccos 1 #m«agasp . &84p 1
0 2 8 s ' 0.5 Sas 2 ]
Once the unitarization procedure is employed, the expres- ol ’/1 vt T
P ploy b 10? 10° 10* 10°

sions(33), (34), and(28) give rise to the same result for the
phase shift. This is also a useful check of the correctness of

our approach. FIG. 3. Mass of the bound staléz as function of
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also the emergence of an additional energy scale into 50 ‘,-‘\‘\‘ ]
the problem. F T

Of course, one could perform the study also for different oF | .
subtraction choices: if e.g.@0P> 0the masMp tends to . Pk —m. =200 ]
a finite value for an infinite negative coupling; if, instead, § 5oL P B

db< 0 a tachyonic mode (instability) appears for a s5o . \,\ e =200
negative coupling whose modulus is large enough. 100i ':‘ S e ]
Alternatively, one could use a finite cutoff function, but T Treel T
this choice is linked to a nonlocal Lagrangjda@-44]. Yet, r e T
all these possibilities imply that a new energy scale enters 1501 1 LT ]
into the problem. While this might be possible, that would 0o 5 10 15 20
introduce an unnecessary complication and would also {s/m

spoil the fact that only the massentering in Eq(4) is the
unigue energy scale of the system.
In conclusion, the quartic theory of E@) is fully

defined only once its unitarization is settled. The unitarized . . . . o
version of the model together with the employed subtrac> similar to that of Figl. Yet, also in the unitarized case,
> 0 the phase shift and its derivative are always

tion constant chosen in this work assures that the modg] - .
under study is well defined for any{positive and negative) hegative. Moreover, the asymptotic value
and is therefore very well suited for the study that we aim to
do, namely the role of the bound state in a thermal bath.

IG. 4. Behavior of the unitarized phase shjftas function of
s=m for different values of.

v pY  for >0 1P

. o . is realized. In addition, the point at whiclalés Yas1P Ya
D. Behavior of the unitarized phase shift =0 is obtained for
In order to discuss unitarized phase shift, an important

note on the adopted convention is in order. We impose that 1 Re &b Y0, oA2b
the phase shift vanishes at threshold:

where the amplitude becomes purely imaginary with

V& Ya 4m?p Vi0; aB% .
e2| 03B1P 1 )

regardless of the existence of the bound state below 2 Al 3P
threshold or not. In this way, the comparison between
different curves is better visible. We recall that often a'he points; is present for each positive value oince
different convention is used, according to which the phasg@e &P is unbounded from below. According to the
space at threshold equalss , wherengs is the number of Levinson theorenj46,47] Eq. (41) implies that a pole
bound states below thresh@{tb]. Of course, the choice of below threshold exists. Indeed, for 0 such a pole of the
the convention has no impact on the physics. For instancamplitude is present for a negative valuesdahat fulfills
the Levinson theorerf#6,47] relates the number of poles the very same Eq35), but of course this pole does not
below threshold to the difference of the phase shift agorrespond to a physical bound state.
infinity and at threshold: Next, for negative but belonging to the range
d.% 16 2;0p, the phase shift is positive, it rises for
small values of s=m, it reaches a maximum, and than it

1
—ayu 2 Ux~1 2
Mpoles-below-hresnold/ 0 o & b o&Yadm®Pb $0b o ds over approaching zero for large values: of

This quantity is clearly independent on the choice of an Ys b Y0 for = 344b
overall constant. In some cases, the number of poles below

threshold equals the number of bound states, but carefjs is also in agreement with the Levinsotheorem,
needed, since some unphysical poles may also exisince no pole below threshold appears.

see below. o . _ . Finally, for < . the phase J&P is negative and
Similarly, the finite temperature properties studied iypnroaches

the next section depend on the derivatm%’ésb:ds,

which is also independent on the convention regarding Y& b Y, for < 345b
¢/ 8 Y2 4m?R We shall also elaborate more on the behavior
of gésbin Sec.lll.3. in accordance with Levinstmtheorem, since a pole for

Let us now present the behavior of the unitarized phase¥s M% exists. Also in this case, there is a certain value
shift §&bpin Fig.4. Only for small , the behavior of (&P s %s; at which the phase is =2.
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r o o bound state that dominates the near-threshold phenom-
Spo T E enology is built.
g |/ :
s ol e =0T lll. THERMODYNAMICAL PROPERTIES
AN R OF THE THEORY
5F “"""-‘—"_—_-_- ------ S ] . H
! . oo ] We now consider the thermodynamics (TD) of the
50 . ' ' ] system at nonzero temperature. We first discuss the

L R e PR A L . .

Eo : pressure of the system by using the phase-shift approach
§ or k ] at tree level, in which no bound state is present, and then at
T P memememeos T the unitarized one-loop level. Within the latter scheme, we

e Sop TSl — 200U study the contribution to the TD of an emerging bound state
I ""‘\:.-__f_l_oox U] when the attraction is large enough to form it ( ;).
Sop IIIL A. Pressure without the bound state: Tree-level results
S or l\ ] The noninteracting part of the pressure for a gas of
S sof N T T particles with masm reads:
> | \\ —.. =-200,U 7 h ]
100F N\ TTeeol_ TUoIoel p '
Sl Tl R Pue T In1 e Kpm . 36
150F i ehral Mhraborbirat k
0 5 10 15 20
Vsim In theS-matrix formalisn{48-56], the interacting part of

the pressure is related to the derivative of the phase shift

FIG. 5. Comparigon of tree-level (T) and unitarized (U) phas?/vith respect to the energy by the following relation:

shifts as function of s=mfor different values of. As we discuss

in the text, the phase shift is chosen to vanish at threshold 7 X 5

[ §8 Ya4m?p ¥0], independently of the value of In this way it . 20p 12 d BYaxb

; . . . P n¥% T dx

is easy to compare the behavior of the phase shift for different om . dx

values of , even when a bound state emerges. This choice does Z n p 70 i

not affect the physics. % n1 e Kb<. ®7b

k

In Fig. 5 we compare the tree-level (T) and thewhere x4 P s. In our specific case, only the-wave
unitarized (U) phase shifts. The top panel shows thggntribution is nonzero:

results when is small ( 10). The qualitative behavior of

the phase shifts for both. cases is similar for aEm z 1d &veps h p
shown in the figure. Wheh s=mis small €4), the tree- P % T dX—Odi In 1 e kP
level and unitarized results are very close to each other, 2m X k

en a discrepancy is appreciable at larger values of 8P

s=m In the middle panel we show a similar comparison
for ¥ 10Q In this case the unitarized phase shifts differThen, the total tree-level pressure (obviously in the absence
significantly from the tree-level ones. Fots 10Q the of a bound state, since at tree level it cannot be generated)
Hnitarized phase shift first increases sharply for increasirig given by

s=m, reaches a maximum, and then starts decreasing.
The magnitude of thB unitarized phase shift is larger than Pt VaP feePp P iy Cat tree leved AP
Bwat at tree level at low s=m but becomes smaller at large _ _

s=m For Y p100 both the tree-leyel and the unita- The previous equations show that we can evaluate the
rized phase shift decrease for increaglrsngm However, Pressure at > 0 by using solely the phase shift evaluated_
the decrease is much steeper for the unitarized phase shifftthe vacuum. Of course, all other relevant thermodynamic
The bottom panel of Figs shows the choice s 200.  quantities of' Fhe thermal system (s_uch as energy and
For ¥, 200the comparison of the tree-level and unita-entropy densities, etc.) can be determined once the pressure
rized phase shift is similar to that of/a 100 However, IS known. _
the behavior of unitarized phase shift fots 200 is The temperature dependence of the corresponding pres-
completely different from the tree-level one. While treeSUre® eep P inP=T* is shown in Fig.6. The %0
level phase shift is positive, the unitarized phase shift ikne corresponds to the pressure of a free Bag.=T*
negative because< .. Correspondingly, in this case the that for largeT=m saturates towards the massless limit
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0sET T e ]
L ‘ ________________________
T 011”7 -
g B ,’lll_/,'_' il gl iy
o N4
+ il
% 0.054 ----- =-200 ;
a " L :blOO
| .= =100
] ——. =200 7
) S S S [ 0““1““1““1““’
0 5 10 15 20 0 5 10 15 20
T/m T/m
FIG. 6. Tree-level plots of the normalized pressure as functioRIG. 8. Temperature dependence of the normalized pressure in
of T=mfor different values of. the unitarized case for¥s 10 and for % 10Q
4 Z h i
1d Y& v x2p P
.. . u 1 ZZo> AT K2px2 .
(P ee=Th o ¥a 2290). For positive (negative), the F -n 7 T - dx dx kln 1 e :
tree-level repulsive (attractive) interaction implies that &H0b
the pressure is smaller (larger) than the noninteracting
case, but never exceeds 0.5. As we shall see, the unitariza-
tion enhances the contribution of the interaction. Then, the total pressure (in the absence of a bound state) is

Next, in Fig.7 we studyP _,=T*andP =P geca@s given by
function of for four differentm=T ratios 2, 1, 0.5 and 0.2.
One can see that nea# 0, P ,=T* changes rapidly
with , but then saturates at large values .di the right
panel, one can see that all the curves of the function
P =P .ree Cross the origin at ¥ 0, which is expected Figure8 shows the temperature dependence of pressure
since there is no interaction a¥: 0. Further, it can be seen in the unitarized case. [Note, no bound state contribution is
that the effect of the interaction is larger both for large present here since all the considered values of the.coupling
and/or lowm=T. are larger than..] For small ( 10), the normalized
pressure saturates at larffem

Yet, for ¥ 100the normalized pressure as a function
of the temperature is quite different from the noninteracting
case, since it reaches a maximum for a finite value of the

When including the unitarization procedure explainedemperature. In general, this figure shows that for large
in Sec.ll B, the interaction contribution to the pressurevalues of and for large temperatures, the unitarized result
is obtained by using the unitarized phase shift into thés sizably different from the tree-level result reported

PRt YaP greep PY ,, anitarizedfor > R &1p

B. Pressure without the bound state:
Unitarized results

S-matrix formalism: in Fig. 6.
T LA BN A BRI R FT T " T
Tree level —_——-mIT=2 02; _._,\Ireelevel ——--m/T=2 ]
I - - e miT=1 | “t '\\ —— mT=1 ]
0.02)- N miT=0.5"] Fo \ miT =05 -
r \ . m/T=02 0.1 T —-—- m/T=02-
. ————— A | 3 S O ]
I L RN D_E ““““ ~
S oof e 1% o0 S :
o g C \.\‘ S ]
\ N —.. | o - N, J
T O.li NNl ]
L N | C .\ -
0.02+ S - L A\.\ ]
T 0.Zj T~ ]
1 1 1 1 [ | 1 1 1 1
400 200 0 200 400 400 200 0 200 400

FIG. 7. The left panel shows the normalized pressure at tree level as functfondifferent temperatures. The right panel shows the
ratio of the interacting pressure over the pressure of a free gas as functitor different temperatures.
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C. The general case: Inclusion of the bound state, g2 &P 1 5
formal aspects, and numerical results o Ya Z & M2Ppi dor 0<s < 4mR

The crucial question of the present work is how to &H6b
include the effect of the emergent bound st&t&n the
thermodynamics. The easiest way is to add to the pressyffare
of the system the pressure of mass as:

1

% |V|2|:)
PB 1/4 6 c =) In 1 e k2b é ; $2b 1/4 B

k

db7P

Using the expression for the phase shift of 8¢)we find:
where the theta function takes into account that fer

2
there is no bound stat. Of course Mg is itself also a Jasb 1/4}arccosl - 2 ST
function of , see Eq(35) and Fig.3. 2 & Mgh°p
Within this context, the full (unitarized) pressure looks For 0<s < 4m?b Hsp

like

For0 < s <M 3 the argument of the arccos is 1 (for an
&unitarizegfor any b &3p arbitrary small ), then unitarized phase shiff Yan ,
wheren is an integer. We recall that it in this work we
require that § &bvanishes at threshold:

P%tl/“PBp P ;freep pY

-int

Quite remarkablyP}; turns out to be a continuous function
of , even ifPg is not continuous at % . since it jumps Uas 1, Am2b Y.0: &H9b
abruptly from O to a certain finite value. Yet, the quantity 0 '

U i i i . . .
P int IS also not continuous in such a way to compensatg, assuming that there is a single pole below threshold, for

the previous jump; see below. _ _ s <M3 it is useful to impose that¥s 1
The issue is if the inclusion d?Pg as in Eq.(52) is
correct. To study this point, we discuss how the contribu- Y30 <s<Mgh ¥ for0O<s<M32: &0p

tion of the bound state can be formally included into the

ppasded-_sh'ﬂ analséSé,s,_ shclwvmg that thhe ﬂmpledprescr_'ptmext, we notice that fos ¥s M3, the argument equals to
of adding one additional state to the thermodynamics is 2, U n ; : ;
correct and the result is independent on the residuum ofthi 7 ¥4 1, therefore g %3 for this particular choice

of s.
pole of the bound state. U ) - ,
In order to show these features, let us first modify 1ne function g3 ¥ax“pmust be (for a finite, even if

Eq. (28) by extending its validity also below the threshold_arbitrarily small) a continuous and differentiable function.
To this end we consider Hence, it follows that

e 1 gés%M%b Ya 5: ®HB1p
i alm &P AYER B4ap
Moreover, for any value df13 <s < 4m? we have
where Im dsbis given by Eq(24). Clearly, above threshold UBMZ < s < 4m?b Y0; &B2b

nothing changes. On the other hand, below threshold we

get the following expression: We may then conclude that f& &;4m?R alias for

x  d0;2mpR the phase shift takes the form:
e2i g&b 1
o Ya AP Y.

ATEP & O UsiPsbve b & Mgh ®3p

. ) ) In this way we obtain the desired result:
Note, if is set strictly to zero, we get obviously zero. If

there is no pole below thresholdy is an infinitesimally 1d Yaxb
small number, that can be set to zero and has no effect in the -
description of the system.

Next, let us assume that a bound state below threshold Quite interestingly, this result is independent on the
appearsA &P &b ¥0fors¥aM3 &;4m?RInthis  residue of the pol&. The bound state counts always as 1,
case, we have (below threshold): showing that the corresponding density of states is given by

Y & Mgk 64p
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T ™ T I ]
50F ] 201 | 7
C ] i = —— =-200
Op o R 7 10 | .
= I oA i | =200
g SoF Tl 1 %° of e L
Do L e T 1 L | T
L i B i /‘/
100 . ;
C ! T =00 10F i .
: [ i i/
1501 b =200 L il
[ . | ] 20j il —
00 H T A B R B I P B I [
1.9 1.95 2 2.05 2.1 1.9 1.95 2 2.05 2.1
{s/m Vs/m

FIG. 9. Left panel shows the energy dependence of the unitarized phase shift f{@20Q Right panel shows the derivative of the
corresponding phase shifts.

Z h i
Ng% &, b e P Kpmz 1 l; H5p P inttot 72 pY %nt b Ps
K 1d Y& vax?p
_ _ ve T dx=—0="2T
in agreement with thermal models. 7 0 h dx :

In order to understand better the behavior of the phase
shift, we show in the left panel of Fi§the behavior of the
unitarized phase shift below threshold for two different
values, one below and another above the critical value.
For ¥%200> ., the phase shift is simply zero Below thewhere the lower bound of the integral is now set to zero. If
threshold and decreases with the increase efm,  the bound state is present, itastomaticallytaken into
whereas, for ¥4 200< , the phase shiftis (accord- account (independently on the binding energy).
ing to our convention) below the mass of the bound Next, we discuss the numerical result in presence of a

tate Mg=m 1.98). The phase shift jumps to zero for bound state. As we have already mentioned, the formation

s ¥ Mg and remains zero up to the threshold. This jumpf bound state is possible wherns less than the critical
of phase shift is due to the formation of the bound statezalue % 16 2.

Ab8ve threshold the phase shift decreases with the increaseFigure 10 shows the temperature dependence of the
of  s=m normalized total pressure for¥s 20Q For the value

The right panel of FigQ shows the energy dependence of % 200 (which is less than;) the bound state is present
the derivative of the phase shift. Fovs 200, the derivative and, as expected, the total normalized pressure is larger
of the phase shift is zero below threshold. Above thresholthan that of noninteracting particle. For the valdé 200
this quantity is pegative and its magnitude increases witthe total pressure is strongly reduced. Yet, in general, the
the increage of s=m For % 20Q there is a delta qualitative behavior of the curves fos 200 is quite
function at™ s % Mg, which is responsible for the inclu- similar to those for ¥ 100 depicted in Fig8.
sion of the bound state in the phase-shift formalism. Indeed,
as shown in Eq50), the pressure depends on the derivative 0.14F——— m
of the phase shift, hence the functions depicted in the right R
panel of Fig.9 represent the two-particle energy weight. B

One can also understand from the plots in &tgat, using 0.1f ]
the more common convention according to which the phase & 1

p22
x In1l e ¥p¥: %66P
k

shift equals at threshold when a bound state is present, D':§ 0.085;{:/\ """" i -

would amountto considef&p p for % 200in the left o006H N T
panel, while the right panel would remain unchanged. This 0.04f} el =200 ]
result shows that the choice of the phase-shift value at 0021 """""""""""" E

threshold does not affect the thermodynamics (as well as
any other physical property), as it should. bl
. : 0 5 10 15 20
Finally, we turn to the thermodynamics of the system. T
The pressure contributions from the bound state and
from the interaction can be described by the followingriG. 10. Temperature dependence of the normalized pressure in
expression: the unitarized case for¥s 20Q
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FIG. 11. The left panel shows the behavior of the interacting part of the normalized pressureThighright panel shows the
-dependence of the interacting part of the pressure relative to that of a free gas of particles with mass

The left panel of Figll shows the variation of the part of the pressure becomes negative as a consequence
interacting part of normalized pressure witfexcluding of the bound state. The right panel of Fiyl shows
the contribution of the bound state) using the unitarizethe -dependence of interacting part of the pressure
phase shift. Unlike the tree-level result (left panel ofelative to that of a free gas. It shows that foof the

Fig. 7), the interacting pressure in the present case isrder (or larger) of 200, the interacting part of the

discontinuous at % .. Infact, for <

T T T
0.15r ———-miT=2 -
I — - - =-m/iT=1 |
- AN mT=05 |
L S \-\ — = miT=02
0.1f N e
< | ~ 3
= S
o8 NSl
o i \\\‘\\- .\A .....
0.05- TTTe et oo
07 L L PRI BRI |
400 200 0 200 400

FIG. 12. Total pressure as function ofor different values of

the temperature.

FIG. 13. Variation of with T=mfor two different below the

critical value.

o the interacting pressure is definitely sizable.

Figure 12 shows the behavior of the normalized total
pressure as function of Here, both the contribution of the
bound state and of the interaction above threshold are
included. Quite remarkably, the total pressure is a con-
tinuous function also at % .: the discontinuity of the
interacting part of the pressure shown in the left panel of
Fig. 12is compensated by an analogous (but with opposite
sign) jump of the bound state pressure.

Finally, in Fig.13 we show the variation of

pY -int b PB
2

or; b v B 7P
Pg

as function off =mfor two different values of for which
the bound states form: one just below the critical value,
¢, and a value sizably below it,% 200. This ratio
approaches unity wheRY ., is zero. When is just

below ¢, this ratio is close to unity only at loWw=nt it
then decreases with the increaselefm and eventually
saturates around 0.6 at high€=m so even at high
temperaturd =mthis fraction is not negligible. Although
the magnitude of is smaller, the trend is similar in case
of ¥ 200as well.

The results suggest that for a bound state created close to
threshold (thus smaller but close tq,), the bound state is
indeed important, and the negative contribution to the
pressure generated by the particle-particle interaction does
not overcome the positive contribution of the bound state.
In that case, one should better include the contribution of
the bound state to the pressure, but eventually one should
take into account that its quantitative role is diminished by
the interaction above threshold.
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IV. SUMMARY (the nonrelativistic case, realized foismaller but close

In this work we have investigated bound states in lo ), the bound state has a sizable contribution to the

termal gas in the context of QFT. To do ths, a QEILI°*=U1e 7 s [0 e hermocyramice The con
involving a single scalar particle with masssubject to a y y pprop

4.interaction has been used. Besides the tree-level resu ultiplicative parameter due to the role of the particle-
o rticle interaction above threshold. Yet, it turns out to be
we have employed a unitarized one-loop resumme

aporoach for which the theorv is finite and well defined® 9¢" than 0.6. We conclude that bound states (such as
PP whl ory IS inl W €IN€Gauclei or other molecular states in QCD) should not be
for each value of the coupling constanand for which

16 new enerav scale anoears in the theorv. Moreover fnreglected in thermal models, even if their concrete pressure
gy bp Y. » "ntribution can be somewhat smaller than the value of the

<Thccea Ec;t;gdssr;[?:eofforg]]: swave scattering has bee(:orresponding thermal integrals. Moreover, the multiplicity
P 9 such bounds states can be calculated by the usual

calculated using the partial wave decomposition of tw%xpression for the thermal number density, regardless of
body scattering and has been used to calculate the propgrs

ties of the system at finite temperature through the phas%-e temperature at which the gas is considered, even if it is
shift (or S-matrix) approach, according to which the density

of states is proportional to the derivative of the phase shif(;[t

with respect to the running energys. . fields. We expect that the general picture should be quite
For > 0, the contrlb_utlo_n of the interaction to the.stable and independent on the precise adopted model, but it

Pressure IS aI_vvays negative, in agreement with the repulsn\%uld be important to directly verify this statement.

nature of the interaction. On the other hand, for < 0, Moreover, one could also calculate the parametén

the co_ntril_:ution to the pressure .is posit_ive indicating aldome concrete examples, such as for the deuteron or for the
attractive interaction. Below; the interacting part of the Rredominantly molecularl’ike StalekR87h

pressure due to two-body scattering switches sign:
becomes negative due to the bound state below threshold.
Yet, the additional contribution of a gas of bound states ACKNOWLEDGMENTS
makes the total pressure continuous with respect to the The authors acknowledge useful discussions with W.
coupling . Broniowski and S. Mréwczynski. S. S. is supported by the
In summary, the contribution of the bound state to thé>olish National Agency for Academic Exchange through
pressure as usually calculated in thermal models is actuallfam Scholarship with Agreement No. PPN/ULM/2019/1/
diminished by the contribution of the interaction amongd0093/U/00001. F. G. acknowledges support from the
the fields, but it is not fully canceled. Especially in thePolish National Science Centre NCN through the OPUS
case in which the mass of the bound state is clogmnto Project No. 2019/33/B/ST2/00613.

uch larger than the binding energy of the bound state.
In the future, one can repeat the present analysis by using
her types of QFT, eventually by including fermionic
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The most unstable quantum states and elementary particles possess more than a single decay channel. At
the same time, it is well known that typically the decay law is not simply exponential. Therefore, it is natural
to ask how to spot the nonexponential decay when (at least) two decay channels are opened. In this work, we
study the tunneling phenomenon of an initially localized particle in two spatially opposite directions through
two different barriers, mimicking two decay channels. In this framework, through speci c quantum mechanical
examples which can be accurately solved, we study the general properties of a two-channel decay that apply for
various unstable quantum states (including unstable particles). Apart from small deviations at early times, the
survival probability and the partial tunneling probability along the chosen direction are very well described by the
exponential-decay model. In contrast, the ratios of the decay probabilities and probability currents are evidently
not a simple constant (as they would be in the exponential limit), but display time-persisting oscillations. Hence,
these ratios are optimal witnesses of deviations from the exponential-decay law.

DOI: 10.1103/PhysRevA.102.022204

I. INTRODUCTION were also con rmed in the tunneling of sodium atoms, which

represent a genuine irreversible quantum de&ay Finally,

he QZE and IZE are also related to the quantum computation
nd quantum control, which are important elements in this
ourishing research eld B2,33].

Deviations from the exponential-decay law are indeed
L expected also in quantum eld theory (QFT), which is the
prepared at the initial time= 0 has not dgcazyed yetatalater iimate correct framework to study the creation and annihi-
timet > 0, is quadratic in timep(t) S 1 S t°. Onthe other |54i0n of particles, and hence the decay of unstable particles
hand, for very long times (typically several orders of mag-1103435]. Namely, even if a perturbative treatment is not
nitude larger than the lifetime?]), the nondecay probability capable to capture such deviatioB] the spectral function
is typically governed by a power law. From the experimental;, QFT is not a Breit-Wigner37-39] and, in some cases, it
point of view, the deviations from the exponential decay have.gn pe very different from i0]. As a consequence, the decay
been veri ed at short times in the study of tunneling of sodium|ayy is also not a simple exponential. Unfortunately, a direct
atoms in an optical potential f] and, more recently, in the  experimental proof of the nonexponential decay of unstable
study of decays of unstable molecules via the emission oflementary particles is still missing. Nonetheless, the Zeno
phOtOﬂS u.5] Even |f ubiquitOUS from a theoretical pOiI’lt of effect con rmed recent'y in Cavity QED4{1] Suggests that
view, in physical systems the deviations from the exponentiafjifferent dynamical features of the simplest QM systems may
case are typically very small, making them very dif cult to be a|so have their counterparts in different purely QFT situations.
measured. An interesting case is realized when an unstable quantum

Quite remarkably, the nonexponential decay also allowsstate (or particle) can decay in (at least) two channels. Indeed,
one to inuence the decay rate by changing the way thehis situation takes place very often in Nature. For instance, in
measurement is performed. As examples, the famous Quathe realm of particle physics, most unstable particles possess
tum Zeno Effect (QZE) and the Inverse Zeno Effect (IZE) multiple decay channelst]. Similarly, electrons in excited
are direct consequences of the peculiarity of the decay lawtoms can decay in more than a single energy lel@l |
[16-27] . Indeed, experimental con rmation of both the QZE  As expected, in the exponential limit, the ratio of the decay
and the IZE was achieved in experiments in which elecprobabilities into the rst and the second channel is a constant.
trons undergo a Rabi transition between atomic energy levels detailed study of the nonexponential decay when two (or
[28-30]. In these cases, the nondecay probability oscillatesnore) decay channels are present is describedL@Gh |n
in time as cos’( t) and is evidently nonexponential. Even QM, this ratio is not a constant, but shows some peculiar
if this is not a real unstable system, the slowdown of theand irregular oscillations, which inlp] were discussed in
quantum transition by frequent measurements could be segRe framework of the so-called Lee modé#[45] (also called
in these experiments. Even more interestingly, these effecie Friedrichs model or the Jaynes-Cummings mot&if]),

The fact that the decay law in quantum mechanics (QM) i
not described by an exponential function is well establishe
[1-13]. In particular, decaying systems very often exhibit the
Zeno periodat short initial times, in which the nondecay
probability, i.e., the probability(t) that the unstable particle

2469-9926/2020/102(2)/022204(9) 022204-1 ©2020 American Physical Society
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which captures the most salient features of QFT (for detailspne could use other initial wave functions without changing
see [L0,47-50]). Moreover, qualitatively similar results for the the qualitative results that we are going to present.

ratio of the partial decay probability currents were obtained The properties of the studied system are controlled by
in [10Q], also in a quantum eld theoretical model. Yet, the only two independent dimensionless parameters. It is clearly
topic of nonexponential decay in the presence of more decayisible that all quantities can be expressed in units xed by
channels needs novel and different studies that will allowthe half distancdr. Namely, if all distances are measured in
us to understand, in more detail, its features and make amnits of R, energies in units oh’7 (mR?), and time intervals

experimental veri cation (or falsi cation) possible. in units of MR/ h, then the properly rescaled (dimensionless)
In this work, we explore the two-channel decay problemHamiltonian takes the form

in a quantum mechanical context. To this aim, we introduce .1 g2 .

a simple model of a single particle initially con ned in a H=S-—+ VW[ (x+ 1)+ (xS 1), 3)

box potential whose walls are suddenly partially released, 2dx?

allowing the particle to tunnel to the open space. In thiswhere Vg = %WL and = Vr/V_ are two independent di-
way, we slightly generalize the celebratbhter’'s mode([3], mensionless parameters controlling the heights of the left
where only a single box wall is released. The Winter modebarrier and the ratio between the right and the left heights,
is recognized as one of the most important workhorses in theespectively. In these units, we solve the time-dependent
theory of nonexponential decays (see, for examgle9]land  Schrddinger equation,

[5]] for a general treatment). In our work, we want to mimic (:SH) (xt)=0 4)

two different channels of a decay and therefore we focus on t ' '
situations of essentially different barriers. In contrast to thewith the initial wave function Z). Notice that in the chosen
symmetric situation of identical barrier§S2-54], in this case  units, the initial energy of the system (in the linW§ ,

the exact analytical solution is known only for the scatteringand > 0)isEo = /8, which is of the order of 1. Clearly,
problem of external wave packetS§59 and it does not due to the mirror symmetry of the problem, without losing
provide a straightforward solution for the decay scenariogenerality, one can restrict to<Q 1.

studied here §0]. Speci cally, using (in numerical means) To quantify the dynamics of the system, we focus our
the corresponding time-dependent Schrddinger equation, wattention orthe nondecay probabilitse ned as

check how to capture deviations from the exponential-decay ‘1
law. In agreement with Ref1[)], but with a different method, Po(t) = dx| (x t)]% (5)
we nd that the ratio of the decay probability currents shows $1

time-persisting deviations from the exponential-decay law e | the probability that the particle is remaining in the region
pred|pt|pns. The main advantage of the apprqach presentggi (51, 1) at the timet. Note that this quantity is inter-
here is its complete transparency of all successive steps and gfangeably also calldtie survival probability but then some

feasibility in physical experiments in which the tunneling in attention is neededb[l]. Moreover, we also consider the left
different directions can be obtained by asymmetric potentialsang the right decay probabilities de ned as

Moreover, as discussed in the summary, the qualitative fea- &1

tures of the obtained results are expected to be quite general R(t) = dx| (x )2 (6a)
and can be used not only to describe the generic tunneling S Y
processes of particles to the open space, but also to understand +
decays of unstable relativistic particles in the QFT language. Pr(t) = dx| (x, 1), (6b)
+1
Il. THE MODEL whereP_(t) (Pr(t)) is the probability that at the timg the

particle can be found to the left (right) of the well, i.e., it is the

one-dimensional space subjected to two separapsatential probability that the tunneling to the left (right) has occurred
. : X ; .. in the time interval between 0 amdObviously, at any instant
barriers. The system is described by the following Hamilto-

nian: t, these probabilities are not independent and must obey the
: normalization condition

In this paper, we consider a single particle moving in a

. h? d?2 .
H=§ —d—2+ Vi (x+ R+ Ve x3R), (1)
2mdx Po(t) + RL(t) + Pr(t) = 1. ™
whereRis the half distance between the two barriers and theilt is also extremely useful to consider the probability currents
height is controlled by the independent parame¥grandVk.  (the time derivatives of the probabilities) describing the speed
Our aim is to nd the decay properties of a particle that is of their temporal change,
initially located between the barriers. To this aim, at the initial

moment { = 0), the wave function is taken as o(t) = & dRy(t) oL(t) = dR.(t) OR(t) = dRk(t) ®)
dt ' dt ’ dt
(1= 0)= o(x)= “5cos %, xR (2y  Notice that the de nition ofp(t) takes into account that the
’ 0 0, IX| > R, nondecay probability decreases with time. Temporal changes

of po(t) are often measured in experiments since it corre-
which corresponds to the ground state in the limit of barrierssponds to the number of decay products per unit of time (for
of in nite heights. This choice is quite natural, but of course instance, the lifetime measurement of the neutron by the beam

022204-2
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method 2] or the decay of H-like ions via electron capture 0.0 : ‘ ‘ 0.0
and neutrino emissior6B]). Note that a simple interpretation o5 ]
holds: pL(r)(t)dt is the probability that the decay occurs to the ' VosSu=dssl 0 Vo=10x=4/5]
right (left) betweer andt + dt. Clearly, from the relation?®), s 19 1 o4
one nds that o -15 ]
ISEE e o=5x=35 —06" Vo=104=3/5]
Po(t) = pL(t) + Pr(t). @ 29 |
The central quantities that we focus on in the following are =%, Vo=54=25 o T Vo t0x=2r5
the right-to-left ratio of probabilities, 0 5 10 15 20 70 5 10 15 20
t 0.14 ‘ Vo=54=2/5  0.05 ‘ Vo=104=2]5]
= o w

and its counterpart, the right-to-left ratio of probability cur-
rents,

0.1

I'(t)

Vo=5x=3/5| 0.03 Vo=104=3/5]

_ Pr(t) 0.0 1 002
©= pL(t) () 0.0 Vo=S&=4/5 0,02 Vo=10k=4/5
15 20 0 5 10 15 20

It will turn out that the time dependence of both ratios plays 0 5 1
a crucial role in capturing the nonexponential-decay behavior t t

Of the system. .. . FIG. 1. Upper panels: The nondecay probabifgyt) as a func-
Finally, let us recal,l the e_Xp“(_:'t forms of _a"_these functions tion of time for some chosen values ofindV,. The insets highlight
when the exponential Breit-Wigner (BW) limi§—66] holds.  the hehavior at short times. Bottom panels: The corresponding resuits
In this limit, the nondecay probability reads for the decay rate (t) = S InPy(t)/t.

po(t) 8" & ¢, (12)

. . dimensionless HamiltoniarB). In practice, due to a lack of
where isthe decay rate. As argued &j[the exponential de-  convenient exact analytical solutions, we diagonalize it on
pendence of the nondecay probability is a direct consequeng nite spatial interval with closed boundaries &t + L
of the Breit-Wigner energy distribution of the unstaple statewith L/R 1 (for more technical details, see the Appendix).
The decay rate can also be decomposed to partial decaywe then calculate the nondecay probabifyt), the partial
rates to the “left” | and to the “right” g associated with decay probabilitie®, (t) andPk(t), and, nally, the two ratios

these two distinguished decay channels; | + g. Then, (t)and (t).
the partial decay probabilities have the form In the upper pane] of F|g_’]_, we show the nondecay
&V Lje st probability Py(t) as a function of time for some chosen values
RL(t) —@se ), (13a)  of \p and (the insets highlight the changes for sl It
) is clearly seen that after a short initial perid@(t) exhibits
Pr(t) &V _R(l Se’ ). (13b)  an exponential decay. It is even more evident when the decay
rate (t) =S InPy(t)/t is plotted (bottom panel in Figl)—
Obviously, the partial decay probability currents read after some small initial wiggles, it reaches a constant value,

indicating a quite fast transition to the BW regime. These
W 5 i W S results suggest that in the regime of exponential decay, the
pL(t) 5 Le” 5 pr(t) S RE™ . (14) approximation {2) should be applied. It turns out that in
For future convenience, we introduce the ratio of the partiathis regime, the nondecay probability aimost ideally ts the
decay widths, relation

= /L (15) Pot) €° (St (17)

which, in the BW limit, remains constant and directly con- manifesting the correctness of the BW limit predictions. Note
nects the right-to-left ratiosl0) and (1), that in general the additional “time shifty is nonzero and
its inverse is directly related to the initial period of nonex-
(t) = RO &V W Pr(t) _ (). (16)  ponential decay. In fact, the sign tfindicates if, for small
R(t) pL(t) times, the dynamics is sub- or supexponential (&% dnd
To show that the exponential-decay law is violated, it is[46] for detailed discussions of this point). In the cases studied
suf cient to expose deviations from the constant value ofhere, this parameter is very close to 0 and, due to numerical

= g/ L. This is why the right-to-left ratioslQ) and (L1) uncertainty, we are not able to determine its sign. To gain
are of special interest. a deeper insight into the validity of the BW approximation,

we additionally check how the ratio of partial decay rates
depends on andV, (see Fig.2). It turns out that the

ratio becomes insensitive to changed/fwhen\ is large
We solve the Schrddinger equatiof) py expressing the enough. In fact, for a considered range ofthe changes in

time-dependent wave function in terms of eigenstates of th§, do not affect the value of when\, exceeds a value

Ill. RESULTS
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FIG. 2. The ratio of partial decay ratescalculated in the BW !

limit as a function of the asymmetry parametefior different values FIG. 3. Partial decay probabilitié@(t) andP_(t) as a function
02\2/0,' The green solid line indicates a phenomenological relatien 4t time. Note that accurate numerical results (continuous black lines)
justi ed in the limit of largeVo. coincidence with predictions of the BW limit8) (red dashed lines).

See the main text for details.

of about 15. Moreover, in this regime, the ratiQ when
treated as a function of, almost perfectly follow the simple o o )
relation () $2 (green line in Fig2). This relation has BW limit are clearly visible. Both functions eventually reach
a direct intuitive phenomenological explanation. For lavge ~ the expected constant value ofin the limit of large times.
tunnelings in opposite directions become almost independeffote, however, that here we do not consider very large times
and therefore the ratio of tunneling amplitudes is simply giveri® Which the decay is again nonexponential due to the onset
by the ratio of the barrier heights$. It means that the ratio Of @ power law. In our studies, when referring to intermediate
of probabilities is controlled solely byS2. and large times, we mean periods in which the decay is almost
The discussion above means that the exponential formuligeally exponential. _
provides a very good approximation for large enough (but _I_n_fact, our results allow us to concl_ude tha_t partial prob-
not too large) times. Clear deviations are visible only forabilities FL(t) and Px(t) are generally linearly independent
initial moments (for the cases studied, 5). Of course, the ~functions since, if (t) and (t) are not identically equal,
deviations become larger for smalldy. However, we focus then the WronskiaW(t) = RL(t)pr(t) S Pr(t)pc(t) is not
on the cases in whicRy(t) is almost exponential since this is Singular. [Note that for = 1, symmetric tunneling to the
the typically realized scenario in Nature. left and to the right occurs: (t) = (t) = 1]. Only for a
The situation is very similar when partial decay probabili- Very large time, when both ratios reach an almost constant
ties (6) are considered. In this case, after tting to appropriatevalue , one nds that (t)S (t) 0, which means that
exponential functions of the form

Rur(t) —S[18 e 150, (18) TV A o Vemaaca] . U p A Uies
we see full agreement of the BW limit predictions with 355 5 '
accurate numerical results (see RBdor comparison). ; 4 ,

All three results presented for probabiliti®s(t), Pr(t), S Lim . . .
andP (t) suggest that any discrepancies from the exponential 3| 1\ A . Vo=8x=3/5 3R A A A 4 & a4 n o Voz10k=3 5]
behavior are poorly captured by these quantities. We checke A 7 1 T
that this is also the case when the probability curresits.€., Vo=5x=4/5] 2 . n Vo=10k=4 5
the temporal derivatives of the probabilities, are considered. ; ‘ ‘ ‘ 1l

5 10 15 20 0 5 10 15 20 25 30

However, the situation changes dramatically when, instead of
pure probabilities (probability currents), the properties of their
temporal ratios (t) and (t) are investigated. In Fig}, we FIG. 4. Temporal ratio of partial probabilities(t) (continuous
present accurate numerical results for these ratios as afuncti(nﬁes) and partia| probab|||ty Currentit) (dashed |ines) as functions
of time for the same set of parameters as in EigOne can  of time for the same set of parameters as in EigThe insets high-
see that the ratios (t) and (t) have rather complex be- light the short-time behavior. Both quantities oscillate at intermediate
havior, especially for the initial period. More importantly, the times but the ratio (t) shows evident deviations from the BW limit
deviations from the constant value obtained in the exponentigiredictions even for very long times.

t t

022204-4



CAPTURING NONEXPONENTIAL DYNAMICS IN THE ... PHYSICAL REVIEW A102, 022204 (2020)

partial probabilitiesPx(t) and P_(t) behave as nearly linear- both quantities are described by the same decay width
dependent functions. only in the BW limit independently in the underlying model.
In particular, the right-to-left probability currents ratidgt) It means that any deviation from this prediction is a direct

shows evident oscillations persisting for a very long time. Itmanifestation of the nonexponential decay. In other words, as
means that it is an appropriate quantity to exhibit deviationgdong as the probabilities for the two partial decay channels
from the exponential BW limit predictions, even in momentsare not equal, the corresponding functidagt) and Px(t)
when the standard nondecay probabilRy(t), the partial approach the respective exponential limits in a slightly differ-
decay probabilitiesz(t) and P_(t), or even their ratio (t) ent way. Consequently, ratios(t) and (t) are characterized
are not able to capture this behavior. Let us also recall that thky slightly different and time-dependent parameters. This is
ratio (t) has a straightforward physical meaning. For the timethe intuitive reason why the ratios enhance the differences
intervals in which (t)> [ (t) < ], the particle decay to quite independently of the details of a model. This is also
the right is more [less] probable than naively expected fronone of the reasons why very similar results were obtained in
the exponential law. Then, the value ofhas only an appro- a completely different context inlf] in the framework of
priate interpretation as an average ratio. Closer inspection dhe Lee model44] containing essential simpli cation when
Fig. 4 shows additional interesting insights for the function compared to the generalized Winter's model considered here.

(t). Namely, the amplitude of oscillations does not decreasén contrast to the case studied, in the Lee model it is assumed
in the limit of largeVy as long as is suf ciently different  that there exists the uniquenstablestate| o decaying to
from unity. Namely, when it approaches 1, the ratit) two different subspaces (channklandR) spanned by states
rapidly attens around the expected value 1. Consequenthyk, L and|k, R having the same dispersion relatiokk). In
in these cases, the deviations from the expected constant limsich a case, the Hamiltonian of the system can be written
become very small. explicitly in the basis of these states as

The above analysis shows that the ratio$) and (t) can

be regarded as appropriate quantities capturing nonexponen-
tial decay in the presence of two decay channels. HoweveH ee = Eo| o ol + dk (KIk, k|
as we argued, the ratio of the time derivativg$) is much (LR O
more sensitive to nonexponential features of the system than
the direct ratio of probabilities (t). Therefore, from the + dk[f (K)|k, ol+ f (K] o kI
experimental point of view, if one aims to validate exponential (LR} ©
decay, the largest effort should be put toward accurate deter- (29)
mination of the quantity (t) rather than (t).

It is interesting to note that for a given asymmetry of the,, 1o (k)= k [H| o are transition amplitudes control-

barriers , the amplitude of the oscillations is not strongly | tynneling through the barriers. The nonexponential decay
dependent ofo. For example, as presented in Fil.the  ohqerveq in these two, essentially different models suggests

amplitudes forVp = 5 andVo = 10 are not much different 506 more that our ndings on properties of ratiog) and
when the same value of = 2/5. In contrast, the frequency (t) persist model independently.

of the oscillations is essentially affected by the choic&/of
and it is larger for strongéy,. The latter observation implies
that for very largeVp, experimental detection of oscillations
will be very challenging due to the nite resolution of time
probes. Simply, to have any realistic chance to detect the In this work, we analyzed the general problem of capturing
effect, a period of the oscillation should not be smaller thamonexponential properties in the presence of the two-channel
the experimental time resolution. decay process. Taking as a working horse a very simple dy-
Importantly, it should be pointed out here that in our work, namical problem of a single particle owing out from a leaky
we do not consider deviations from the exponential decayox, we examined direct relations between the probabilities of
occurring always for very large times, i.e., when the decaytunneling to the right and the left as functions of the control
is characterized by the power law rather than the exponerparameters. In this way, we studied relations between partial
tial one [1,3,15]. In fact, this regime is not well captured decays into two distinct channels in a relatively simple system,
in our analysis due to the numerical simpli cation of the which allows for a very accurate numerical treatment. Since
model described in the Appendix. Although going beyondthe multiple channel decay of an unstable quantum state is
this approximation is straightforward, it highly increases thea very frequent problem in QM and QFT, the results can be
numerical complexity without changing the results in the timeimportant for our understanding of a broad range of physical
ranges that we are interested in. Therefore, the discussion phenomena.
properties of the ratios (t) and (t) for very long times is The results obtained con rm that in the presence of two
beyond the scope of this work. decay channels, the system exhibits a remarkable nonexpo-
One can expect that the qualitative features of the resultsential behavior on long timescales. Even in cases where
obtained do not signi cantly depend on the details of thethe simplest quantities do not reveal any nonexponential
employed decay model. This conviction is justi ed since signatures, the interchannel ratio of probability currents
the origin of the different behavior of (t) and (t) is directly exposes these features. Importantly, this quantity,
ingrained in the fundamental properties of the two-channehlthough not the simplest property of the system, is almost
decay, rather than a particular physical realization. Note thadlirectly measurable in experimen&7/69]. Therefore, it can

IV. CONCLUSIONS
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be viewed as a possibéenoking gurof nonexponential-decay support from the (Polish) National Science Center under
behavior. Grant No. 201622/ E/ ST2 00555.
It is worthwhile to point out that the model discussed in
this work, although seemingly oversimpli ed, to some extent
can be realized experimentally and gives prospects for direct APPENDIX: NUMERICAL APPROACH

veri cation of our predictions. State-of-the-art experiments  Numerical calculations are performed in the basis of the
[70-73] with ultracold atoms conned in optical traps al- gjgenstates of the Hamiltoniag)(diagonalized numerically
low one to prepare quasi-one-dimensional uniform box trapgn 4 nite spatial interval with closed boundary conditions at
where particles are con ned. Moreover, the outside wallsy = 4 | Everywhere besides the points + 1, the Hamil-
of these traps can be controlled independently and releasgghjan is equivalent to the Hamiltonian of a free particle.

almost on-demand, opening direct routes to realize our modeferefore, any of its eigenstates can be expressed as follows:
Another interesting direction of experimental realization is to

analyze different nuclei with nonsymmetric few-channel de- Asin[p(L + X)] if x< $1
cays, for instance, the decay oparticle in large nonspherical (x) = Bsin[p(L $ x)] if x> 1 (A1)
nuclei. Csin(px) + Dcos(x) if x| 1,

From a theoretical point of view, one can easily extend the

present work to more complicated (and more realistic) form%vhere parameterd, B, C, andD are established in such a
of asymmetric potentials. While any qualitative differences ay that the wave function ful lls continuity conditions at

from the resul_ts obtained are not expected, su_ch stud|e_s Wouhsitions of the left and the right barrier. These four conditions
help to establish a closer relevance to upcoming experiment ad

schemes. From the conceptual side, extensions of the re-
sults to higher dimensions are also straightforward. Another
promising route for further explorations is to study analogous
systems containing several interacting particlé$-85] and d
pin down the role of the quantum statistics. Furthermore, thaim — (x) S — (x)

topic should also be reinvestigated in the realm of QF T to shed © dX S1+ dx 518
some fresh light on the problem of multichannel decays of im[ 1+ )S @S )]
elementary particles and composite hadrons. 0

IimO[ (S1+ )S (S1S ) =0, (A2a)

2V (S51), (A2b)

0, (A2c)

2V (1), (A2d)

. d < d
lim dx x)y S dx (x)
ACKNOWLEDGMENTS 0 ox 1+ X 18

F.G. thanks G. Pagliara, M. Piotrowska, and K. Kska- and they lead to the homogenous system of linear equations
Maciejska for useful discussions. T.S. acknowledges nanciabf the formM -v = 0, wherev = (A, B,C, D)" and

J

spcos[L S 1)p] 0 Sipcos(p) SV sin(p) Vicosfp)S Zpsin(p)

M = 0 Sipcos[L S 1)pl 3pcosp)+ Vrsin(p) Vkcos(p) S Zpsin(p)
sin[(L S 1)p] 0 sin(p) S cos(p)
0 Ssin[(L S 1)p] S sin(p) S cos(p)

(

In this way, the allowed momentg and the corresponding is easily controlled (and, if needed, may be straightforwardly
coef cients v; are determined. Then, the the time-dependentmproved) by changing the number of terms in the expansion
wave function is simply given as (A3). Typically, in our calculations, we use 3000 terms and
L = 400-600, which is suf cient to achieve well-converged
results avoiding re ections at the wallsat= + L for larget.

The method used assures a full control on the accuracy of the
nal results.

(1) = iexp Sitp/2  (x), (A3)
i
where the expansion coef cients; are determined by the
initial wave function 2). The accuracy of the nal results
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